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4 Abstract—A wide variety of color schemes have been devised for mapping scalar data to color. We address the challenge of

5 color-mappingmultivariate data. While a number of methods can map low-dimensional data to color, for example, using bilinear

6 or barycentric interpolation for two or three variables, these methods do not scale to higher data dimensions. Likewise, schemes that

7 take a more artistic approach through color mixing and the like also face limits when it comes to the number of variables they can

8 encode. Our approach does not have these limitations. It is data driven in that it determines a proper and consistent color map from first

9 embedding the data samples into a circular interactive multivariate color mapping display (ICD) and then fusing this display with a

10 convex (CIE HCL) color space. The variables (data attributes) are arranged in terms of their similarity and mapped to the ICD’s

11 boundary to control the embedding. Using this layout, the color of a multivariate data sample is then obtained via modified generalized

12 barycentric coordinate interpolation of the map. The system we devised has facilities for contrast and feature enhancement, supports

13 both regular and irregular grids, can deal with multi-field as well as multispectral data, and can produce heat maps, choropleth maps,

14 and diagrams such as scatterplots.

15 Index Terms—Multivariate data, color mapping, color space, high dimensional data, pseudo coloring

Ç

16 1 INTRODUCTION

17 MAPPING data to color has a rich history and several
18 well-tested color schemes have emerged (e.g., [1], [6],
19 [35]). Most of these, however, are defined for scalar data
20 where a scalar value indexes a one-dimensional table that
21 returns an RGB color triple. Other schemes assign colors to
22 different, usually disjoint materials and then use standard
23 blending functions to handle areas where materials overlap
24 or mix together. The latter often occurs in the graphical ren-
25 dering of simulations or imaged data, while the former is
26 frequently encountered in pseudo-coloring for heat maps or
27 choropleth maps.
28 In this paper, we are interested in colorizing multivariate
29 data. Here we mainly focus on numerical data (categorical
30 data can be converted into numerical data [34]). These types
31 of multivariate data occur frequently in many applications,
32 such as demographic assessments, environmental monitor-
33 ing, scientific simulations, imaging, business [10] and others.
34 The domain can be a geographic map, an image, or a volume.
35 They are a subset ofmulti-field datawhich also includemulti-
36 channel, multi-attribute, multi-modal, and multi-material
37 data, among others. Visualizing these types of data in their
38 native domain remains challenging, and there is so far little
39 support tomap these data vectors directly into color.

40A common practice is to visualize multivariate data as
41multiple images where each channel is mapped to a sepa-
42rate plot with a simple color scale. Fig. 1d shows such an
43arrangement for four scalar images. However, a disjoint dis-
44play of this nature makes it difficult to recognize correla-
45tions (or a lack thereof) that may exist among the different
46channels (variables) in the image.
47For this reason, we wish to fuse the individual images
48into a single multi-color image. Correlations can then be
49easily perceived by similarity of color, while dissimilarities
50become apparent by color variations. At the same time we
51can use the color as a label to reveal which of the factors
52dominate or co-exist in certain areas. Essentially, we retain
53color as a visual representation of the relative strength of a
54given variable for each pixel in the image.
55One way to achieve this fusion is by interpolation or
56blending. Let us assume we have n � 3 variables. Then
57each variable is assigned to one of n primary colors, and a
58mapped color is produced via bilinear (for n ¼ 2 variables)
59or barycentric (for n ¼ 3 variables) interpolation [36]. Alter-
60natively, we can assign each variable to one of a monitor’s
61three (RGB) primaries and blend the three variables directly
62in hardware into an RGB image.
63One drawback of this concept is that it is difficult to
64extend to n > 3. Hardware blending is infeasible since
65monitors typically only have three primary colors. Con-
66versely, interpolation could be realized using advanced
67schemes like generalized barycentric interpolation [25]. A
68severe drawback of interpolation and blending is that they
69do not yield a perceptually uniform result. Both map the
70data into an RGB color cube which is not a perceptual color
71space. It gives rise to the rainbow color map which renders
72some value differentials invisible while overly emphasizing
73others [4], [31]. This is not the case for the established 1D
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74 color maps which are the result of psycho-physical experi-
75 ments and are perceptually uniform.
76 The systemwe have devised combines amultivariate data
77 embedding scheme [7] inspired by generalized barycentric
78 interpolation with a perceptually uniform colorspace, CIE
79 HCL. The teaser image of Fig. 1 gives an overview of our
80 approach by ways of an example. Fig. 1d shows the four
81 channel images we wish to fuse. Stacked up, each image
82 pixel is a 4D data point. We embed the data points into what
83 we call circular interactive multivariate color mapping display
84 (ICD), shown in Fig. 1a. The attributes are arranged on the
85 ICD’s boundary in terms of their similarity. Using the ICD,
86 the color of a multivariate data sample is then obtained via
87 generalized barycentric coordinate interpolation. The gener-
88 ated image (see Fig. 1b) clearly shows at what locations pix-
89 els correlate andwhat the dominant factors are.
90 Our paper is structured as follows. Section 2 presents
91 related work. Section 3 gives an overview of our tool and
92 framework. Section 4 presents its basic features, while
93 Section 5 describes additional functionalities we developed
94 in response to requirements we discovered during practical
95 use. Section 6 showcases several case studies. Section 7
96 presents a user study and feedback. Section 8 ends with con-
97 clusions and future work.

98 2 RELATED WORK

99 A colormap is also frequently referred to as color palette or color
100 scheme. Color palettes are most often designed for univariate
101 data, and they are almost always due to some path in a given
102 color space. A very simple method to generate a color palette
103 is to linearly interpolate between RGB ¼ ð0; 0; 255Þ and
104 RGB ¼ ð255; 0; 0Þ, which is equivalent to varying the hues in
105 HSV color space from red to purple. This gives rise to the infa-
106 mous rainbow colormap. While straightforward to implement,
107 the rainbow colormap is less than ideal since it is not iso-
108 luminant. This means that it has sub-ranges that have little
109 perceivable contrast and consequently any scalar detail map-
110 ping into these sub-ranges is difficult to distinguish [4], [28].
111 There has been significant work on designing more effec-
112 tive standard color maps for scientific data visualization.Well

113known here is the IBM PRAVDA system [2]. In addition, a
114prominent guide is also the Color Brewer [6] which presents a
115variety of color schemes for cartography applications, broken
116down into sequential, diverging, and qualitative schemes. For
117the former two schemes the site suggests decompositions into
118up to 9 elements. More could be obtained via interpolation,
119either piecewise linear to preserve the original elements or via
120higher-order functions. The Brewer schemes are highly
121respected and widely applied. According to the authors [16]
122they were designed “using both experience and trial and
123error”. Later, in more analytical researchWijffelaars et al. [35]
124show that the Brewer palettes generally follow curved paths
125in the hue slices of the CIE LUV color space, but that the ele-
126ments are not iso-distant from one another. The authors then
127describe an analytical tool by which lightness-ordered
128palettes of any hue can be created andwhich follow optimally
129lightness-sampled paths.
130Choosing colors in CIE LUV color space is preferable
131since it is perceptually uniform. Perceptual uniformity
132means that any two equidistant colors elicit the same per-
133ceived color contrast in a human observer. These perceptu-
134ally well-defined distance relationships enable a convenient
135mapping of geometric operations into color space. We take
136advantage of these relationships in our work. Once the map-
137ping is done we convert to RGB for display.
138The perceptual uniformity of CIE LUV space has also
139proven to be effective for the rendering of photographic
140(RGB) volume datasets. It allowed for meaningful opacity
141mappings as well as gradient calculations [12]. Finally,
142more recent research on color palettes includes that of Fang
143et al. [13] who presented a method for maximizing the per-
144ceptual distances among a set of colors assigned by users
145for categorical data. Gramazio et al. [14], on the other hand,
146described work that sought to optimize color palettes for
147user-defined discriminability and preferences.

1482.1 Bivariate and Trivariate Color Palettes

149We are specifically interested in color schemes that can sup-
150port multivariate data. Stevens presents an online how-to
151guide [36] for constructing a 3� 3 bivariate color palette from

Fig. 1. System interface with all major displays and components (using the battery data, see Section 6.2 for more detail). Users can select a multivar-
iate data point in any of these displays via mouse click. The system responds by highlighting the selected data point with a small circle both in the tar-
geted display as well as in the other, synched displays (see arrows, added for illustration). (a) Integrated CIE HCL (Hue Chroma Luminance)
interactive multivariate color mapping display (ICD, top) with control panel (middle), and the selected point’s multivariate spectrum display (bottom).
(b) Multi-field / hyperspectral image, pseudo-colored via the multivariate color map in (a). (c) Locally enhanced colorization of the selected rectangu-
lar region in (b). (d) Individual scalar images (usually displayed on the bottom of the interface in a channel view partition) colorized via the attribute-
linked color primaries marked and labeled at the circle boundary of the multivariate color map in (a). The image in (b) constitutes a joint colorization
of these individual channel images.
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152 two three-element 1D color palettes (see Fig. 2). It constructs a
153 2D palette cell by blending two 1D palette cells together. Ste-
154 vens writes that this requires some manual tweaking in hue
155 and saturation to make the mixed cells along the diagonal
156 more distinguishable. In fact, this manual tweaking of cell
157 colors is not unlike the more principled and algorithmic tech-
158 niques that have been published in the visualization commu-
159 nity to address the problems arising from the blending of
160 colors in two or more semi-transparent layers [1], [9], [33].
161 One of these problems is the appearance of false (third) colors
162 that can be generated when blending two colors together.
163 Given these problems, it is unclear how Stevens’ scheme
164 would extend to color palettes of an order greater than two. It
165 is also not a proven perceptually uniform scheme.
166 Another way to construct bivariate color palettes is via
167 interpolation or blending. We have already discussed this
168 approach and its shortcomings in the introduction.

169 2.2 Color Mapping for Multivariate Data

170 The colorization of data of more than three variables has
171 received less attention so far. Work in this area includes that
172 of Hagh-Shenas et al. [15]. They compare two techniques for
173 the visualization of 6-dimensional data on choropleth maps:
174 (1) blending using six separate color ramps and (2) texturing
175 with spectral noise. Their user studies reveal that while the
176 error rate for blending significantly rises already for three
177 variables, the increase in the error rate for texturing is only
178 statistically significant for the case of six joint variables (five
179 was not tested). Our approach also performs blending but
180 users can visually map a color back into the ICD (see
181 Fig. 1a) to gain insight about the multivariate proportions
182 (using intensity to determine the overall strength). Con-
183 versely, in the system by Hagh-Shenas et al. users need to
184 mentally decode the blended value into its k constituents
185 via the k disjoint color ramps which is arguably difficult.
186 Their more promising noise textures, on the other hand,
187 have limited use in our case since they cannot be used in a
188 continuous domain without severe loss in resolution.
189 Others have looked at the problem from the perspective of
190 dimension reduction. These methods have been mainly
191 described in the context of mapping hyperspectral image
192 data into RGB space. Ready and Witz [28] perform Principal
193 Component Analysis (PCA) [19] and map the top three PCA
194 vectors into color space. However, while this preserves as
195 much of the data variance as possible, it offers little control
196 about the colors assigned and their relations to the variables.
197 On the other hand, Lawrence et al. [23] use Multidimen-
198 sional Scaling (MDS) [22] for dimension reduction and enforce
199 constraints on the colors used in different areas of the image
200 by adding a value constraint into the MDS stress equation.
201 This requires a suitably colored input image to specify this

202value constraint. As such this algorithm is more of a frame-
203work for painting colored images from multispectral image
204data since the constraints are given in the image domain and
205not in the attributedomain.And so, imposing color constraints
206on the data attributes themselves is not easily done. In that
207respect, there is no color legend and no concrete colormap.

2082.3 Multivariate Data Visualization

209Our ICD (see Fig. 1a) embeds multivariate data into a 2D dis-
210play. We use a technique that is essentially an optimized ver-
211sion of RadViz [17], whichwe presented in [7]. There, we also
212showed that the equations of RadViz are equivalent to those
213of Generalized Barycentric Coordinate interpolation [7], [25]
214when formulated as a mapping problem and substituting the
215convex polygon by a ring. There are also other embedding
216techniques, such as ISOMAP [32], t-distributed stochastic
217neighbor embedding (t-SNE) [24], multidimensional scaling
218(MDS) [22], locally linear embedding (LLE) [29] and others
219but all of these only map the data samples but cannot retain
220the data attributes. The latter is important for us however,
221since we wish to enable the user to relate the blended color to
222the respective channels (see our discussion in Section 2.2).
223RadViz [17] fulfills this goal, but similar to Star Coordinates
224[20] andGeneralizedBarycentric Coordinates [25] itmay result
225in an ambiguous display where data points far apart in high-
226dimensional space can map closely in the 2D display. The
227three-way optimization scheme we presented in [7] absolves
228that, creating a display in which (1) similar (correlated) attrib-
229utes map closely on the RadViz ring, (2) data points close (far)
230in high-dimensional space also map close (far) from one
231another in the 2D display (gauged by Euclidian distance), and
232(3) the display locations the data points aremapped to are pro-
233portional to the values they have for the corresponding attrib-
234utes located on the RadViz ring.We note that we normalize all
235dimensions into a [0, 1] interval prior tomapping.
236Finally, another paradigm we might use is the data con-
237text map [8]. While it also maps attributes and sample
238points into a common space, it intersperses them which
239makes integration with a color map difficult.

2403 OVERVIEW

241Multi-field data [18] often come on irregularly and possibly
242sparsely sampled geo-domains. This can lead to visualiza-
243tions that are difficult to interpret due to a lack of continuity.
244Suppose we havem sample points and for each such sample
245point Pi, there are n attributes. For the sample point Pi, its
246attribute vectorDi can be recorded as

Di ¼ di1; di2; . . . ; din½ �;
248248

249where dij is the jth channel value of the ith sample point.
250Conversely, we can also construct a vector for each of the n
251attributes, comprised of the m samples. For instance, the jth
252attribute Vj, is then represented as:

Vj ¼ d1j; d2j; . . . ; dmj

� �
: 254254

255

256The geolocation of Pi, can be represented as the 2-tuple

PiX; PiY½ �;
258258

Fig. 2. Constructing a bivariate color palette from two univariate color
palettes (see Stevens [36]).
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259 and it is the sample or pixel location in the original geo-
260 domain or image, respectively. Alternatively, the geoloca-
261 tions can also be determined by a two-dimensional space
262 embedding, such as MDS, PCA, etc. (see Section 6.4) of the
263 high-dimensional data. In the latter case the multivariate
264 data vector plays a dual role—it determines the color and
265 the geolocation.
266 As a running example, we will use a dataset of 300 multi-
267 variate pollution samples obtained at irregularly placed sen-
268 sors in a large Asian metropolitan area. This dataset consists
269 of spatial measurements of several heavy pollutant chemi-
270 cals—As; Cd; Cr; Cu; Hg; Ni; Pb, and Zn. Fig. 3a shows a
271 visualization of the As factor with concentration mapped to
272 luminance and each sample represented by a small tile.
273 Fig. 3b shows the same data now interpolated with adaptive
274 kernel density estimation (AKDE) [21]. AKDE adapts the ker-
275 nel used for interpolation to the local sparseness of the data,
276 using a wider kernel over samples situated in low-density
277 regions, and vice versa. The interpolated map makes it much
278 easier to appreciate isolated and grouped hot spots as well as
279 uneventful areas. For this reason, wewill only use theAKDE-
280 interpolated domain for irregularly spaced data.
281 Fig. 4d shows the AKDE-interpolated maps for all eight
282 pollutants arranged into small multiples. We observe that
283 the disjoint display makes it difficult to appreciate spatial
284 correlations that may exist among the pollutants. In the next
285 sections we describe our interface, ColorMapND, designed
286 to overcome this challenge.

287 3.1 The ColorMapND Interface

288 Fig. 4 shows the interface of our ColorMapND system for the
289 aforementioned pollution dataset. It consists of the follow-
290 ing four components: (a) Color Legend Panel, (b) Pseudo-
291 Colored Plot, (c) Local Enhancement Panel, and (d) Channel
292 View.
293 The Color Legend Panel (a) contains the circular interactive
294 multivariate color mapping display (ICD) with the color map
295 doubling as a color legend. The vertical slider on the right can
296 be used to rotate the ICD’s outer ring andwith it the attributes
297 and the assembly of data points, and so alter the mapping’s
298 color assignments. The ring spacing check box allows users to
299 choose the attribute layout scheme along the ring—uniformly
300 spaced or correlation-optimized. The color contrast check box
301 sets the system into the color-preserving or data-driven color
302 enhancementmode. The ellipse size andmagnification sliders are

303used for detail enhancement (see Section 5.4 for all). Finally,
304the bar charts on the bottom visualize the true values for each
305attribute of a given point (see below).
306The Pseudo-Colored Plot (b) in the center shows the color-
307ized image. The details contrast slider can be used to control
308the strength of the length-to-opacitymapping (see Section 5.1).
309The Local Enhancement Panel (c) displays the locally color-
310enhanced area chosen by a rectangle or polygon drawn into
311the colorized image (shown here as a white box). The degree
312of color enhancement u can be controlled by the slider below
313the image. Optionally, users can also color-enhance the entire
314colorized image.
315The Channel View (d) on the bottom is a small multiple
316view of all attribute/channel images, each colorized by the
317color selected by their respective node points in the ICD’s
318outer ring. This display allows users to focus on one attri-
319bute at a time.
320Our system is fully interactive (after an initial 3-4s setup
321time for a newly loadeddataset) and lends itselfwell to explor-
322atory scenarios.Moving themouse over the colorized image or
323within the ICD updates the bar chart of the Color Legend
324Panel with the channel values of the moused-over point. This
325gives users quantitative information about the point and can
326further help them recognize the fusion of the colors.
327Mouse interactions in one display are conveyed in the
328other displays as well, essentially linking them together for
329ease of visual information retrieval. Observe that in Fig. 4,
330each of the displays has a point circled in black (bottom left
331in the images, top center in the ICD). The dots move synchro-
332nously no matter in which physical display the mouse actu-
333ally is. In this particular example we can easily learn that the
334(circled) heavy pollutant area has high “Pb” and “Gd”.
335In the following sections we will first describe the basic
336framework and then move to the more advanced algorithms
337and operations.

Fig. 3. Visualizing the “As” factor in the pollution data (a) Irregularly sam-
pled observations. (b) AKDE interpolation (c) Color legend - range is
[1.61, 30.13].

Fig. 4. The interface of our system, using the pollution dataset as a dem-
onstration example.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. X, XXXXX 2018



338 4 THE BASIC FRAMEWORK

339 The three fundamental tasks of our multivariate color map-
340 ping framework are as follows:

341 1. Convey dissimilarities in the multivariate data as
342 perceivable differences in color ! visually encode
343 the data sample to data sample relationships.
344 2. Convey dissimilarities of the attributes as per-
345 ceivable differences in color ! visually encode the
346 attribute to attribute relationships.
347 3. Convey associations of a data sample with the attrib-
348 utes as a perceivable labeling in color ! visually
349 encode the attribute to data sample relationships.
350 The mediating interface of our framework is the repre-
351 sentation gained by fusing the optimized RadViz display
352 with an equally-shaped color map, forming the ICD. The
353 accuracy of both of these components is prerequisite to the
354 accuracy in the three main tasks listed above.
355 In terms of the spatial embedding of the multivariate
356 data into the ICD, the first and third tasks have been
357 addressed to a large extent by the framework published in
358 [7]. We summarize it in Section 4.3 and describe how we
359 adapted it for the circular boundary of the ICD. The second
360 task is addressed by a novel similarity-based attribute
361 ordering and spacing. This is described in Section 4.2.
362 Having achieved a faithful spatial embedding of the mul-
363 tivariate data we next require a perceptually accurate color
364 mapping framework which can convert these spatial rela-
365 tionships to perceivable color relationships. This is one of
366 the main contributions of this work and is described in
367 detail in Section 4.1.

368 4.1 Color Mapping in the CIE HCL Color Space

369 Colormapping is the process of assigning color to data. It can
370 occur in any color space.We have three requirements for this
371 color space: (1) it should be perceptually uniform, (2) it
372 should be disk-shaped, and (3) theHS (Hue Saturation) slices
373 of the color space should be iso-luminant. The former two are
374 needed to afford the geometrical mapping operations and
375 interactions inherent to our framework, while the last is
376 needed so that we can use the slice-orthogonal direction for
377 vector length encoding.
378 Requirements (1) and (3) rule out the HSV and HSL color
379 spaces which have a disk-shaped cross-section but have
380 non-linear intensity variations within the HS slices. A better
381 choice in these respects is the CIE LUV color space which is

382perceptually uniform [27], [30]; its shape, however, is far
383from circular, violating requirement (2).
384Fortunately there is a lesser known color space—the CIE
385HCL (Hue Chroma Luminance) color space [40]—which fits
386our three constraints. It is a cylindrical representation of the
387CIE LUV color space and removes the non-linear intensity
388variations within a HS slice. However, even though the CIE
389HCL color space seems to fulfill our three requirements, there
390are still some inherent adverse properties which we discov-
391ered in practical use of our system. The solutions we propose
392to overcome these shortcomings are described in Section 5.
393When dealing with color spaces it is important to note that
394color monitors are only capable to display colors within the
395triangular sRGB space which is a sub-region of the CIE space
396(see Fig. 2 in the supplement material for a visual depiction).
397The CIE HCL space we are using has regions that fall outside
398the sRGB space and hence our mapping may produce some
399colors that are not displayable. These are mainly colors in the
400green range bordering to blue which are located around the
401three o’clock position on the ICD ring. A possible solution to
402this problem might be to provide visual cues, such as a
403shaded ring segment, that would alert users to avoid these
404locations for the placement of important primaries. At the
405same time, the sRGB space includes colors that are not con-
406tained in the CIE HCL space. These are the most vibrant
407shades of blue and red which, however, can be recovered by
408our color contrast enhancement facility described in Section 5.

4094.1.1 Optimal HC Slice and ICD Size and Placement

410It turns out that the diameter of the HC slice changes as a
411function of L, and it does so in a non-linear fashion. This
412can be explained by the non-regular shape of the associated
413CIE LUV space. What this means in practice is that the
414capacity of an HC slice to provide a sizable set of human-
415distinguishable colors is dependent on L. Maximizing this
416number is thus desirable.
417We therefore aim to find the CIE HCL slice for which the
418diameter is maximized. This optimal CIE HCL slice is the one
419where the associated slice in the CIE LUV space can pack
420the largest circle. Further, in order to provide an unbiased
421spectral coverage in the color map, we require the center of
422this circle to coincide with the CIE LUV slice’s white point.
423Using iterative search, we found the optimal HC slice to
424be at L ¼ 55. We denote this optimal slice as HCL55 and
425define a coordinate system bounded by � 100 along each of
426the two axes with origin at [0, 0]. The white point on this
427slice is at O ¼ ð26:147; 1:1344Þ and the radius of the maxi-
428mal circle with the white point at its center is R0 ¼ 53:2.
429Fig. 5a shows the optimal slice and ICD disk.
430A remaining concern is that the LUV color space outside
431this maximal circle is essentially wasted (see again Fig. 5a).
432We will return to this issue in Section 5.4.5 where we
433describe our detail enhancement option which utilizes the
434colors of the entire CIE LUV space.

4354.1.2 Encoding Vector Magnitude

436We note that the ICD embeds the data points in terms of
437their affinity to the attributes positioned at the circle’s
438boundary. Data points with a relatively higher value in attri-
439bute A (as compared to attribute B) will map closer to the

Fig. 5. Effective use of the HCL color space: (a) the optimal HC slice at
L ¼ 55 with the maximal circle; (b) the polygonal mapping region of Rad-
Viz and our extension to a circle to enable the full use of the CIE HCL
color space.
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440 boundary node of attribute A than that of attribute B. On the
441 other hand, a data point that has the same value ratios but
442 overall higher values than another data point will map to
443 the same map location. Both points will then be assigned
444 the same color and will be indistinguishable in the colorized
445 geo-spatial display or image.
446 As an extra visual channel, we can use L to encode the
447 vector length. This, however, proves problematic in CIE
448 HCL. Consider two colors A ðHA; CA; LAÞ and B ðHB; CB;
449 LBÞ. If we fix ðHA; CAÞ and ðHB; CBÞ, and only change LA

450 and LB from 1 to 100, we observe the upper two bars in
451 Fig. 6. We make the following two observations: (1) the
452 change in lightness is not linear, and (2) the color changes
453 over the range of L. In fact, in this case, the two different col-
454 ors end at the same color when L ¼ 100.
455 Instead, we can keep the optimal HC slice at L ¼ 55 and
456 only increase transparency t which is equivalent to decreas-
457 ing opacity a, from left to right, using a white background.
458 This is shown in the bottom two bars in Fig. 6. We observe a
459 linear change, an L-like appearance, and a preservation of
460 the original base colors throughout. Thus, in practice we
461 use a to encode vector length, increasing a with increasing
462 vector length. This will render points with greater vector
463 magnitude in a darker color. We will denote this color space
464 as the HCL55a color space.

465 4.2 Mapping the Attributes to the ICD Boundary

466 Placing an attribute node at the ICD boundary labels the
467 attribute with the color at this position. We call it the attrib-
468 ute’s primary color. This color is used to colorize its channel
469 image and it allows users to quickly spot regions in the
470 fused image which are dominated by this attribute.
471 The procedure we use to embed the data points into the
472 ICD (Fig. 1a) is driven by the arrangement of attributes
473 about the ICD’s circular boundary. Each arrangement pro-
474 duces different data layouts and colorizations, emphasizing
475 the criteria enforced by the arrangement.
476 As mentioned in Section 3.1 users have the ability
477 to choose the attribute layout scheme along the ICD ring—
478 uniformly spaced or correlation-optimized. In addition they
479 also have the ability to freely position the attribute nodes on
480 the ICD ring per their own preference, for example to high-
481 light a certain attribute of interest in the colorization, or give
482 it a color associated with some semantics such as blue for a
483 variable called “Winter”.
484 The optimized placement makes sure that the primary
485 colors are optimally used. There are two criteria to con-
486 sider for an arrangement: (1) the order of the attribute
487 nodes, and (2) the spacing between them. Both use the
488 pairwise (1-correlation) distance metric as the input.

489 4.2.1 Determining the Order of the Attributes

490 To determine the order of the attribute nodes on the ICD
491 ring, we require an algorithm that can construct a closed

492loop since we need to place the attribute nodes along a cir-
493cle. This excludes a tour generated by solving a Traveling
494Salesman Approximation since the ends of the salesman
495tour are not connected and therefore not properly spaced
496apart. Instead we express the task as a Hamiltonian Cycle
497Problem (HCP).
498We solve an approximation of it (since the HCP is NP-
499complete) using a dynamic programming approach [3]
500inspired by the original scheme independently developed
501by Bellman, and Hell and Karp. Initially, we divide the
502entire set of connections into different subsets. Then we
503optimize for the best solution over subsets and eventually
504expand to the whole set. The output is an ordered set of
505attribute nodes which can be placed on the ICD ring,
506equally spaced.

5074.2.2 Determining the Spacing of the Attributes

508If we also wish to obtain optimal spacing between the nodes
509on the ICD circular boundary we can use the metric (1� rijÞ
510where rij is the correlation of attribute i and j as follows:

sij ¼
1� rijP

k;l�HC 1� rklð Þ sICD;

512512

513Here, sICD is the circumference of the ICD ring and sij is the
514distance between two attributes i; j on the ICD ring. The
515spacing we obtain groups similar attributes close together,
516which are then assigned similar colors. This is in some sense
517a dimension reduction, saving any distinct primary colors
518for more independent attributes.
519Optimizing the arrangement of the attributes around the
520circle also leads to a better embedding of the data points.
521Fig. 7 compares the layouts obtained with (a) an equidistant
522ordering, and (b) an optimized ordering. We observe that in
523(a) the data points are lumped together and overlap in,
524while in (b) they are more scattered which in turn will yield
525more diversity in the colorization.

5264.2.3 Upper Bound on the Number of Attributes

527There are natural limits rooted in human color contrast per-
528ception which bound the number of attributes that can be
529reasonably encoded. For the CIE LUV color space, the least
530noticeable difference (JND) DEuv in the UV plane is
531

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2 þ Dv2

p ¼ 13 which is equivalent to the difference in
532brightness DL ¼ 1, assuming a color cube sized �100 [26].
533The disk of our HC color space (see Section 4.1.1) has a

Fig. 6. Using lightness (top, range ½1 . . . 100�) vs. opacity (bottom) for
value encoding. (a) and (b) are two different colors, A and B.

Fig. 7. Layouts as a function of attribute spacing on the color map bound-
ary. (a) Equidistant spacing. (b) Optimized spacing.
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534 circumference of s ¼ 2p Ro ¼ 2p�53:2 ¼ 334:26: Thus the
535 number of distinguishable primaries in a ring layout with
536 uniform spacing is s=DEuv ¼ 334:26=13 ¼ 25:6 	 251.
537 This number is equivalent to an angular spacing of 14.4


538 of the attributes on the ICD ring. Hence any attributes
539 spaced closer in an optimized layout will not be well distin-
540 guished. This places a certain advantage for the uniformly
541 spaced layout, but on the other hand, it encodes highly cor-
542 related attributes in a similar color which is semantically
543 meaningful.

544 4.2.4 Interactive Arrangement of the Attributes

545 Apart from the automated attribute ordering and spacing
546 sometimes a targeted interactive placement can help in
547 gaining insight into the data. Consider Fig. 8a where we
548 interactively grouped the most correlated ð> 0:75Þ attrib-
549 utes “Pb” and “Gd” as well as “Ni”, “Cr”, “Cu”. We observe
550 that most points form a single cluster, but we also observe
551 some outliers. These outlier points are dominated by differ-
552 ent attribute combinations. For example, the point circled in
553 black is dominated by “Pb” and “Gd” and the point circled
554 in white is dominated by “Ni”, “Cr” and “Cu”. After check-
555 ing their spatial locations in the colorized image (Fig. 8b),
556 we see the black circled area which is dominated by “Pb”
557 and “Gd”. Such a finding can be important for residents liv-
558 ing in that area, or to their environmental control agency.

559 4.3 Embedding the Data Points Into the ICD

560 As mentioned, for embedding the data points into the ICD
561 we adopt the layout scheme described in [7], which is an
562 optimized version of RadViz [17]. In native RadViz, the
563 location P of a data sample D ¼ ½d1; d2; . . . ; dn� mapped into
564 the interior of the RadViz disk is computed as:

P ¼
Xn
j¼1

wjvj wj ¼ dj =
Xn
k¼1

dk;

566566

567 where vj is the location of attribute node j on the disk’s
568 boundary.
569 As discussed in Section 2.3, the optimized version of the
570 scheme is designed to enforce that (1) similar data points
571 are driven to similar plot locations, and (2) data points with

572an affinity for certain attributes are driven more closely to
573these nodes. We accomplish the latter with an iterative lay-
574out error reduction and the former with a force-directed
575sample adjustment. The interested reader is referred to [7]
576for a detailed description of these two schemes.

5774.3.1 Extending the RadViz Polygon to a Circle

578The linear equations that underlie RadViz (and also our
579optimization of it) map data points into a convex polygonal
580region defined by the attribute vertices vj. However, the
581CIE HCL color space has a circular boundary. Therefore, as
582shown in Fig. 5b, there are pocket regions outside the polyg-
583onal extent in the CIE HCL color space that would never be
584considered in the colorization.
585To accommodate the full CIE HCL space we devised a
586method that enlarges the polygonal mapping to a disk. Sup-
587pose a point P located inside the polygon. Its new position
588P� in the color space disk with center O can then be
589obtained by (see Fig. 5b):

OP

OA
¼ OP �

OB
: 591591

592

5934.3.2 Looking Up the Color

594The CIE HCL color space is a cylinder where each slice is
595indexed in polar coordinates, H and C, and the slice itself is
596selected by L. H is the angular and C is the radial coordi-
597nate. The color ðH; C; LÞ of P� can then be calculated as:

H ¼ tan �1 P �
Y

P �
X

� �
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P �

X
2 þ P �

Y
2

q
L ¼ 55

599599

600where P�
X and P�

Y are the components of point P�.
601To display the HCL color, converting it into RGB is nec-
602essary. This takes three steps. First, convert the HCL color
603into LUV space. This is a simple transform from polar coor-
604dinates to Cartesian coordinates. Second, convert the LUV
605color into XYZ by first obtaining the white point and then
606performing a transform via non-linear mapping. Finally,
607convert the XYZ color into RGB by a linear transform.

6085 ADDITIONAL FUNCTIONALITIES

609When testing the basic framework with some real-world
610datasets, such as the pollution data presented so far as well
611as others, we came across a few shortcomings that needed
612to be addressed to make our system generally practical. The
613solutions we derived for this purpose are described in the
614following subsections.

6155.1 Distribution-Based Vector Magnitude Encoding

616In Section 4.1.2we argued for the use of opacity to encode the
617magnitude of a multivariate vector in the colored domain.
618Domain pixels with a larger magnitude will have a higher
619opacity and therefore amore pronounced visual appearance.
620Fig. 9a shows a colorization of the full 8-channel pollution
621dataset—its corresponding color map is shown in Fig. 7b.
622While we can see some areas with stronger colors, we also
623observe that overall the colors are somewhat washed out.
624This is because the simple uniform opacity mapping scheme
625cannot deal with thewide distribution of vector lengths.

Fig. 8. Interactive color assignment for attributes using the pollution
dataset (a) Color map with point display, (b) colorized geo-spatial
domain. The black and white circled points are interesting outliers.

1. This is somewhat of an approximation since we approximated the
Euclidian distance with a curve. But the error is not large.
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626 We devised a distribution-aware [11] mapping scheme
627 to overcome this problem. We can reasonably approxi-
628 mate the distribution of vector lengths ½l1; l2; ::; lm� by a
629 normal distribution, Gðml; sl). We then standardize and
630 transform this distribution such that it has a more favor-
631 able dynamic range for mapping vector length to an
632 opacity interval of [0,1]. A transformed vector length, l0,
633 is then given as:

l0 ¼ l� ml

sl

� �
sg þ mg;

635635

636 where l is the original vector length and sg ¼ 0:25. For mg,
637 the default value is 0.5, which can be changed in our inter-
638 face to visually enhance certain detail. As such, 68% of the
639 points will fall into the range [mg � sg;mg þ sg].
640 In experiments we found that it can be beneficial to taper
641 off the tails of the distribution. This brings out smaller
642 length variations more clearly and de-emphasizes noise and
643 outliers. Suppose, for a given setting of mg the smallest value
644 of (l01; l

0
2; ::; l

0
m) is l0min and the largest is l0max. We define an

645 opacity encoding function, F, which takes a vector length
646 value l0, and converts it to an opacity Fðl0Þ:

F l0ð Þ ¼
mg � sg

� � l0�l0
minð Þ

mg�sg�l0
minð Þ l0 < mg � sg

l0 l0 2 mg � sg;mg þ sg

� �
l0�mg�sgð Þ

l0max�mg�sgð Þ þ mg þ sg

� �
l0 > mg þ sg

8>>>><
>>>>:

:

648648

649

650 Since it is difficult to set a proper mg value for the opacity
651 mapping in advance, we allow users to interactively change
652 it within the range [0, 1]. This moves the unity-sloped mid-
653 section of the mapping function to the left (right) which
654 decreases (increases) the overall opacity enhancement.
655 Fig. 1 in the supplement material provides a visualization of
656 this function.
657 Fig. 9b shows a colorization obtained with this method
658 for mg ¼ 0.3. We see that it provides considerably more
659 detail and contrast than the plain encoding of Fig. 9a. The
660 video shows an animation across the range of mg.

661 5.2 AKDE Interpolation of Multivariate Colorizations

662 In Section 3 we discussed AKDE interpolation as a means to
663 convert an irregularly sampled domain to a regular one. We
664 demonstrated this method using a scalar field with a single

665color channel. AKDE interpolation of scalar domains has
666been well described in the literature [21]. In this section, we
667expand single-channel AKDE interpolation to multivariate
668colorized domains.
669There are essentially three different strategies distin-
670guished by where the color interpolation occurs—in the
671color space or in the domain image. All methods begin by
672embedding the multivariate irregularly spaced data sam-
673ples into the HCL55 color map using the ICD widget.
674Color First, Interpolate Second. In this scheme, each domain
675sample is mapped into the ICD to obtain its color. Then,
676AKDE-based interpolation is used to estimate the colors of
677the remaining pixels in the domain image. Fig. 10a shows
678a colorization obtained with this procedure. It has rather
679low quality—it looks quantized and has very little detail.
680A comparison with the true multivariate spectra confirms
681that the colors are not overly accurate. Compare, for exam-
682ple, the rather bland colors in the blue and black circle
683in Fig. 10a with the actual multivariate spectra of the corre-
684sponding data points shown in Figs. 10c and 10d,
685respectively.
686Interpolate First, Color Second. Here a pixel color is obtained
687directly from (interpolated) multivariate values. In this pro-
688cedure we would perform AKDE on the multivariate data
689and then look up the colors for each interpolated pixel. How-
690ever, in order to convert a multivariate vector into color, it is
691necessary to compute its position in the ICD. This is not an
692easy undertaking since due to the non-linear optimization
693during the layout, the original position in the ICD to value
694has been lost. The only way to find the color would be to re-
695optimize the layout for both types of points—original and
696AKDE interpolated—an expensive operation.
697Interpolate First, Indirect (Weighted) Color Second. This
698scheme is a compromise which is in some sense reminiscent
699to LLE [29]. It learns the interpolation weights in the image
700domain and applies them in the information domain (repre-
701sented by the ICD). This is expressed in the following equa-
702tion, which is based on Nadaraya–Watson kernel regression
703with kernel function KhðÞ. Here, Pi is one of the m original
704sample points, P �

i is its corresponding location in the ICD,
705P is the pixel to be interpolated, and P � is its corresponding
706location in the ICD, calculated using the weights learned

Fig. 9. Opacity encoding of vector magnitude using the 8-channel pollu-
tion dataset (a) linear encoding, (a) distribution encoding.

Fig. 10. Coloring irregularly sampled domains. (a) Color first, interpolate
second; (b) weighted scheme (c) multivariate spectrum of the point cir-
cled in blue (d) spectrum of the point circled in black.
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707 from the AKDE in the image domain. Using this equationH
708 and C of P are looked up in the ICD at location P �:

P � ¼
Pm

i¼1 Kh P � Pij jj jð ÞDP �
iPm

i¼1 Kh P � Pij jj jð Þ HC ¼ ICD P �½ �:710710

711

712 The computational cost is manageable since it does not
713 require a re-optimization of the layout for each pixel.
714 Fig. 10b shows the result of this interpolation. We find
715 that it preserves the original multivariate spectrum quite
716 well (compare the blue and black circled points with the
717 spectra on Figs. 10c and 10d, respectively).

718 5.3 Dealing with Large Data

719 Information displays such as our ICD suffer from overplot-
720 ting when the number of data points gets large. In our case
721 this leads to conditions where the colormap becomes diffi-
722 cult to read (see Fig. 11a). Such occasions arise when we use
723 the ICD to colorize full-res multi-channel images, such as
724 the multispectral images shown in Fig. 17. Likewise, a large
725 number of attributes leads to an unrecognizable number of
726 primary colors. In the following, we describe techniques
727 that can deal with these problems.

728 5.3.1 Sparsification of Large Point Clouds

729 A first solution is to render the data points crowding the
730 ICD semi-transparently. This can help somewhat in recog-
731 nizing the colors in the colormap layer below, but the visu-
732 alization is still too cluttered. We also experimented with
733 traditional down-sampling methods which select samples
734 based on density or randomly but none produced satisfac-
735 tory results. However, all of these methods tend to neglect
736 outliers and sparsely occupied areas. This is evident in
737 Fig. 11b which shows the result we obtained by a density-
738 based down-sampling of Fig. 11a.
739 Instead, we have opted for a stratified sampling
740 approach based on a 2D hashmap. Our method imposes a
741 200 � 200 2D grid onto the color map and visits each point
742 in turn. Initially, we create a global sample list to store the
743 points after sampling. When a point maps into a so far
744 unvisited grid cell, the point is added to the global sample
745 list. At the same time, the point’s four grid neighbors are
746 frozen. This prevents any new point mapping to it from
747 entering the sample list. The high density areas get more

748samples while low density areas do not, using the following
749mechanism. Every grid cell keeps a counter which incre-
750ments whenever a point maps to it. If the count exceeds a
751set threshold, the neighbors of this grid cell are unfrozen,
752freeing them for the global sample list. Once finished, the
753global sample list is plotted onto the map.
754Fig. 11c shows a result of the stratified sampling algo-
755rithm. We observe that the algorithm retains both the outlier
756points and the main distribution, but at the same time
757reveals the color map in the layer below.

7585.4 Zooming and Contrast Enhancement

759Oftentimes the color map is only partially filled by samples,
760with a few outliers in the remaining regions. While this is
761tolerable in conventional scatterplots with clusters, in our
762application it leads to an underuse of colors. The conse-
763quence is low color contrast in the image domain. See, for
764example, Fig. 12a. We observe that the points mostly use
765colors in the upper part of the HCL55 space. The resulting
766colorization (see Fig. 12e) is consequently somewhat flat
767with a few isolated hotspots. Compare this with Fig. 12g
768which uses the considerably more uniform point distribu-
769tion of Fig. 12c for colorization. The resulting image is much
770more vivid and offers significantly more detail information.
771Some good examples are the areas enclosed in the small
772and large circles. The following subsections present several
773methods we designed.

7745.4.1 Extracting the Main Cluster of Points

775We use an approach akin to a magnifying lens to increase the
776spread of points on the color map. We chose an elliptical
777shape for this lens. We found that this makes the lens easy
778to manage and at the same time enables it to capture the
779typical shape of most point distributions.
780In order to find this ellipse, we first use k-means cluster-
781ing with k ¼ 1. This yields the main cluster and its center
782M. Next, we use Principal Component Analysis (PCA) [19]
783to determine the distribution’s extent as a set of two eigen-
784vectors (black arrows in Fig. 12a), with two sorted eigenval-
785ues �1 and �2. The ellipse is always drawn as a black outline
786(see Figs. 12a, 12b, , 12c, and 12d).
787We consider the interior points falling into the elliptical
788lens the core features, and the exterior points the peripheral fea-
789tures and outliers. Users can increase (decrease) the extent of

Fig. 11. Data sampling schemes: (a) original distribution, (b) down-sampled, (c) hashmap sampled.
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790 the magnifying lens and so include (exclude) further interior
791 points. This operation scales the eigenvectors and yields a
792 larger (smaller) ellipse. In the limit the ellipse is the entire
793 color space disk. This is technically done by increasing the
794 lengths of the eigenvectors using an adjustment parameter b:

a ¼ �1

2
b b ¼ �2

2
b:796796

797

798As default, b ¼ 1, and b can be adjusted via a slider.
799With the interior and exterior points defined, expanding
800the ellipse during magnification will spread the interior
801points onto more color space and give them more contrast
802in the image. Exterior points on the other hand will com-
803press and lose contrast. In that respect they behave like
804points that fall into a lens transition region.
805There are some downsides of this general scheme. First,
806an increase in color contrast will diminish the visual effect of
807similarity. Second, pointsmay change their hue in the expan-
808sion. This gives rise to two separate enhancement schemes.
809Wewill describe these two schemes in the following sections.

8105.4.2 Color-Preserving Contrast Enhancement

811This scheme seeks to preserve the hues of the points and
812only changes saturation. It observes the center of the color
813space, O, and pushes the interior points along lines emanat-
814ing from O towards the border of the circular color space.
815Fig. 13a presents an illustration when the center of the color
816space is inside the lens. In this figure, the inner ellipse is the
817original shape of the lens while the outer ellipse is its cover-
818age after magnification using the parameter u:

OC
*

¼ OA
*

þu OB
*

� OA
*	 


u 2 0; 1½ �; (1)
820820

821When u ¼ 0 then there is no magnification, while when
822u ¼ 1 there is full magnification. In the latter case, the inte-
823rior points are spread over the entire color map and the
824exterior points map to the map’s boundary. For all other
825values of u the interior points map to the larger ellipse and
826the exterior points map into the adjoining annulus region.
827An original interior point P moves to a new location P�
828per the following relationship:

OP �k k ¼ OCk k OPk k
OAk k : (2) 830830

831

Fig. 12. Various color contrast enhancement schemes for the pollution dataset (top row: joint color map - point display, bottom row: colorized spatial
domain. (a, e) original coloring, (b, f) color driven scheme, (c, g) data driven scheme, (d, h) outlier enhancement (CCC scheme).

Fig. 13. Illustration of the color contrast enhancement schemes (a) color
driven scheme with the color space center inside (b) or outside the
ellipse (c) data driven scheme and (d) local color enhancement scheme
(the polygon represents the UV color space).
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832 An exterior point Q, on the other hand, moves to a new
833 location Q� computed as follows:

Q�Ck k ¼ BCk k AQk k
ABk k (3)835835

836

837 When the color map’s center is outside the elliptical lens
838 (see Fig. 13b), the computations are unchanged. In this case,
839 the enhancement is not that large but it preserves more
840 similarity.
841 The result of this enhancement is shown in Fig. 12b for
842 the color space, while the corresponding colorization is
843 shown in Fig. 12f. Compared to the original layout in
844 Fig. 12a, the points on the top left corner spread more
845 towards the color map boundary. We find that the colors
846 are more vivid than in the original colorization of Fig. 12e,
847 but they are still comparable in hue (see for example the
848 region circled in black). Overall, we find that color contrast
849 is increased. On the other hand, the similarity relations are
850 still well observable since this adjustment keeps the points
851 in their original area of the color space.

852 5.4.3 Data-Driven Contrast Enhancement

853 The data-driven scheme focuses on the center of the data
854 distribution, M. It starts from the center of the ellipse and
855 pushes the interior points along lines emanating from M
856 towards the border of the circular color space. This process
857 is illustrated in Fig. 13c. Using again the parameter u, the
858 enlarged area can be obtained as:

MC
*

¼MA
*

þu MB
*

� MA
*	 


u � 0; 1½ �: (4)860860

861

862 The new position of an interior point P is P�. It is com-
863 puted as follows:

MP �k k ¼ MCk k MPk k
MAk k : (5)865865

866

867 On the other hand, an exterior point Q will get com-
868 pressed and its position Q� can be obtained by:

Q�Ck k ¼ BCk k AQk k
ABk k : (6)870870

871

872 The color mapping obtained with this scheme is shown
873 in Fig. 12c and the corresponding colorization is shown in
874 Fig. 12g. Compared to Fig. 12b, the points are now trans-
875 ferred across the color space center and use the color space
876 more effectively than the color-preserving enhancement
877 scheme. And indeed, the colorization in Fig. 12g better visu-
878 alizes the disparity among the pollution chemicals by giving
879 the levels more distinct colors. We can observe more detail,
880 as can be seen, for example, in the region circled in black.
881 However, this coloring loses some of the originally
882 expressed similarity relations, compared to the color pre-
883 serving enhancement coloring.

884 5.4.4 Outlier Enhancement

885 The color contrast enhancements presented so far empha-
886 sized the main distribution points. However, sometimes it
887 can be important to specifically emphasize points outside
888 the main distribution, while de-emphasizing the others.

889Such a scheme would show these former points in vivid col-
890ors according to their attribute affinities, while the latter
891points would visualize in a neutral uniform color.
892For this purpose, we have developed what we call the
893comparison compression coloring (CCC) scheme. The CCC
894scheme works for both the color-preserving and the data-
895driven enhancement methods. It restricts the interior points
896into a smaller region such that they cannot take up many
897colors and distract the user. In this way, the color map will
898give more room to the exterior points. However, in this
899compression, we cannot simply set the parameter u less
900than 0 (for shrinking the lens) and compute the layout via
901Equation (3) or (6). If so, any outliers should be pulled to the
902ellipse as well. Rather, we would like to preserve the iso-
903lated status of these outliers. For this reason, we build a
904weight function based on the distance from the center of the
905color space or the ellipse, respectively. The weight is
906defined as follows:

Wp ¼ G m; sð Þ MPk kð Þ m ¼ 0; s ¼ 0:5ð Þ: 908908

909

910For the color driven scheme, Equation (1) becomes:

OC
*

¼OA
*

þu OB
*

� OA
*	 


WP u � �1; 0½ �: 912912

913

914For the data driven scheme, equation (8) changes to:

MC
*

¼MA
*

þu MB
*

� MA
*	 


WP u � �1; 0½ �: 916916

917

918The new location of point C can be obtained from the
919above equations. Based on the new location, we could then
920compute any point’s new location via Equations (2), (3), (4),
921(5), and (6). The color map of this enhancement scheme is
922shown in Fig. 12d. We observe that the points inside the
923ellipse now occupy a smaller region, using only a few repre-
924sentative colors. The corresponding colorization is shown in
925Fig. 12h. We see that the most dominant main features are
926now visualized in a rather neutral and uniform color. They
927essentially form a contextual backdrop for the more color-
928enhanced outliers, where the color identifies the composition
929of the outlier. For example, in the circled regions we see out-
930lier spots that were difficult to identify as such in the other
931colorings (for example in Fig. 12g) due to over-crowding, but
932they are now clearly visible.We also inserted arrows to point
933to some of the outliers.

9345.4.5 Local Enhancement Using Colors Outside HC

935Disk

936As mentioned in Section 4.1.1, some parts of the LUV color
937space are wasted since the HCL55 circle cannot cover the
938entire convex region of the UV space. To account for this, we
939provide a feature called detail enhancement mode that also
940makes use of colors outside the HC disk. In this mode, when
941we push the points toward the circular border, we allow
942them to cross the circle boundary and spill into the periph-
943eral regions of the UV space. As shown in Fig. 5a, this gives
944the colorization access to stronger shades of purple, green,
945orange, and blue—the colors outside theHCL55 disk.
946We distinguish between local and global color enhance-
947ment mode (see below). In local color enhancement mode,
948the user can specify an area of interest by drawing a
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949 rectangle or polygon on the colorized image. The system
950 then responds by providing a, possibly enlarged, detail
951 image whose colorization only depends on the points that
952 are part of the selected patch. Fig. 1c shows an example for
953 this—the colorization of the image patch bounded with a
954 square in Fig. 1b. It is easy to see the structural information
955 coded by the variation in color in the detail patch, while it is
956 not visible in the large image.
957 The algorithm works as follows. After a patch has been
958 defined, the set S of all points falling into it is identified.
959 Next, the centerM of S is computed, and the points of S are
960 either pushed away or dragged closer to M depending on
961 the type of enhancement—exterior or interior. Fig. 13d
962 shows an illustration of this process. Suppose S comprises
963 points fA; B; C; Pg with center M. We perform a local
964 enhancement using the displacement parameter u. This
965 moves S to S� composed of fA�; B�; C�; P�g. P� is com-
966 puted from P as:

MP �*

¼ u MP
*

u � 0; (7)
968968

969 When u<1 this performs a compression, while when u>1, it
970 performs an enhancement.
971 And indeed, we observe in Fig. 1c that these extra levels
972 of pink have been used to fill in and expose the previously
973 hidden structural variations.

974 5.4.6 Global Enhancement Using Colors Outside HC

975 Disk

976 Global color enhancement mode expands the local area
977 scheme to the entire image. We provide two options: (1)
978 after users have enhanced the colors of a local area they can
979 apply the local detail settings to the entire image, and (2)
980 users can perform an enhancement to the entire image
981 directly. The latter is equivalent to drawing the selection
982 polygon to include the entire image.
983 A result of this procedure is shown in Fig. 14b using the
984 pollution dataset. Compared to Fig. 14a, which is the origi-
985 nal colorization only using colors within the HC disk, we
986 obtain a significantly improved contrast and richer colors
987 which allows more detail to be observed.
988 One might ask, why not always use these exterior UV
989 regions. While the layout optimization schemes described
990 in Sections 4.2 and 4.3, and [7] could easily support the con-
991 vex shape, we would need to forego the ability to rotate the
992 color space for user-defined color-attribute assignments.

993The two enhancement options we provide seemed to pose a
994good compromise.
995We end by noting that whenever the user performs a
996rotation of the color space, or other operation, the points are
997pulled back into the HC disk and the image is reset.

9986 IMPLEMENTATION AND USE CASES

999Our system is implemented as a client-server model. The
1000client application uses the D3 JavaScript library [5] and can
1001run on any modern web browser. The server application is
1002written in C# and runs on an online compute server hosted
1003in our laboratory.
1004Almost all aspects of our system were incrementally
1005developed with domain scientists in the loop, giving us
1006feedback and inspiring new features or modifications
1007thereof on a routine basis. We worked with several groups
1008of scientists, about 100 in total. They came from physics,
1009material science, chemistry, computer science, environment
1010science, and medical science. Proprietary restrictions pre-
1011clude us from presenting some of the results we obtained in
1012this paper. Yet, the following sections attempt to give an
1013overview on the wide spectrum of applications in which
1014our system has been deployed, tested, and evaluated.

10156.1 Environmental Science—Pollution Data

1016We already used these data throughout the paper to demon-
1017strate the various system features. Our collaborators are a
1018group of environmental scientists who have been collecting
1019a large amount of environmental monitoring data recording
1020many toxic elements (see Section 3). The data originate from
1021several major cities located in Shandong Province, China
1022and hence they were not sampled on a regular grid. This
1023inspired the development of the multivariate AKDE inter-
1024polation framework described in Section 5.2.
1025Due to the large number of variables, the scientists pre-
1026ferred the optimized attribute layout. This allowed them to
1027capture the relations of the attributes directly in the display.
1028They found this system feature rather convenient.
1029In the sessions we attended, the scientists applied both
1030the color-preserving and the data-driven enhancement
1031modes in their analyses. We also observed they used the
1032outlier enhancement mode repeatedly. Moreover, they kept
1033using the local detail contrast function, commenting that it
1034enabled them to distinguish the color gamut by adjusting
1035the opacity from different scale levels. The insight they
1036gained using our system has been presented throughout the
1037paper in figure captions and in the text.

10386.2 Physics—Battery Data

1039Our scientific collaborators were a group of physicists and
1040material scientists working at the National Synchrotron
1041Light Source II (NSLS-II) at Brookhaven National Lab. They
1042were looking for a tool that could help them understand a
1043Fluorescence dataset of a battery material, scanned at the
1044lab’s hard X-ray nanoprobe beamline. The data are com-
1045posed of an image stack of four different elements: “Ce”,
1046“Co”, “Fe”, and “Gd”. This mixed ionic-electronic conductor
1047denoted as CGO-CFO is widely used as battery in fuel cells.
1048The key feature of this composition is the formation of a dual
1049phase, thus, locating the new emerging phases is essential to

Fig. 14. Global color enhancement: (a) Original colorization using only
UV colors within the HC disk. (b) Enhanced colorization also using UV
colors outside the HC disk.
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1050 understand the conductivity and performance. Specifically,
1051 the scientists sought to (1) learn about possible interactions
1052 of the four elements, (2) see at which spatial locations these
1053 interactions occur, and (3) detect subtle component changes
1054 that might indicate the location of a new phase. They told us
1055 that their current tools were too tedious to use especially
1056 when the number of elements was beyond three when they
1057 could no longer fuse the data into RGB images.
1058 Fig. 1 shows one of the dashboard visualizations the sci-
1059 entists created. The dashboard presents one of the key dis-
1060 coveries the scientists made when using our software. In the
1061 exploration that led to this dashboard they were looking for
1062 phase changes. It is difficult to see this type of incidence in
1063 an individual element map. Using our tool they could fuse
1064 the channels and soon they focused on the circular area
1065 pointed to by the arrow. They quickly identified the crescent
1066 area as being mostly composed of “Gd” since its color is
1067 purple. But in the upper portion of that area the color starts
1068 to be mixed with blue indicating the presence of more “Ce”
1069 than in the lower part. This apparently suggests the exis-
1070 tence and potential location of a new phase.
1071 Next the scientists focused on the small area delineated
1072 with the white box. By comparing the color with the color
1073 legend, the scientists learned that this area was mainly
1074 made of “Ce” and “Fe” since the color is a mixture of light
1075 green and pink. They wanted to see if this mixture had any
1076 structure in it, but the image could not reveal this. So they
1077 inspected this area in the local enhancement window on the
1078 right. They found that there indeed was a structural pattern
1079 composed of irregularly shaped zones of light green (“Co”)
1080 and pink (“Fe”). By later checking the phase image, scien-
1081 tists confirmed this finding.

10826.3 Choropleth Maps

1083Here we showcase the application of our system to mul-
1084tivariate choropleth maps. The dataset we have chosen is
1085entitled “America’s Mood Map”. It contains data that
1086seeks to characterize each state in the US by the person-
1087ality and temperament of its population. The data was
1088collected through an online survey [38] of more than
1089160,000 Americans. The dataset captures a set of psycho-
1090logical traits, specifically what psychologists call the Big
1091Five: openness to experience, extroversion, agreeable-
1092ness, conscientiousness, and neuroticism. We analyzed
1093the dataset and found via correlation analysis that agree-
1094ableness is somewhat related to conscientiousness, but is
1095only mildly correlated with extroversion. The final two
1096traits, neuroticism and openness do not seem correlated
1097with any other trait. All of these relations are visualized
1098by arrangement in on the ICD color map boundary (see
1099Fig. 15a).
1100We quickly spot a few outliers in the color map. The
1101associated choropleth map (see Fig. 15c) we constructed
1102using our framework just as quickly points out what states
1103these outliers are: Utah (blue arrow) is predominantly con-
1104scientious, Wisconsin (red arrow) is predominantly extro-
1105verted, and surprisingly West Virginia (black arrow) is
1106predominantly neurotic. There are also other states that
1107have slight tendencies to certain traits but not as pro-
1108nounced. Nevertheless, the combined choropleth map
1109makes it easy to spot which states have similar (and dissimi-
1110lar) personality profiles, which is much harder to do with
1111the five individual maps of Figs. 15d, 15e, 15f, 15g, and 15h.
1112And so, one can quickly satisfy a strike of curiosity with
1113regards to one’s own state (or any other), and also look for
1114similar states. For example, looking at Washington and Ore-
1115gon, both have quite similar personalities but are rather dif-
1116ferent from the close neighbor California. The main
1117difference is extroversion. On the other hand, Montana is a
1118relatively “normal” and “peaceful” state—it has almost
1119equal and low values in all of the attributes.

11206.4 Colorizing MDS Plots and Other 2D Embeddings

1121Another useful aspect of the colorization is the added infor-
1122mation it can provide in 2D data embeddings, such as MDS,
1123t-SNE, etc. For example, Fig. 15b shows an MDS layout of
1124the personality data, colorized using the ICD with the same
1125setting than before. By colorizing the points, we can learn
1126about their individual multivariate composition and possi-
1127ble biases in certain variables. These are semantic aspects
1128that are lost in a conventional MDS optimization, but are
1129returned in the colorization.
1130We also observe that the MDS and the colorization pre-
1131serve similar associations. For the most part states with sim-
1132ilar personalities have similar locations and are also
1133colorized similarly. Likewise, outliers pop out with different
1134colors, for example West Virginia (black circle).
1135Finally, our method could also be used in bivariate scat-
1136terplots, colorizing the points to reflect the other currently
1137missing dimensions. This, however, can lead to confetti-like
1138plots when the colorized variables have little correlation
1139with those plotted. It works better with MDS since the
1140embedding optimization provides the multivariate similar-
1141ity structure needed for a coherent display.

Fig. 15. A pseudo-coloring of the US states personality dataset (c) and
its color legend (a).The arrows point at states with outlier behavior. (d)-
(h) Individual choropleth maps of (d) extroversion, (e) openness, (f) neu-
roticism, (g) agreeableness, (h) conscientiousness. (b) MDS plot of all
data and colorized with the ICD.
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1142 6.5 Multispectral Images

1143 A popular type of imagewithmore than three channels is the
1144 multispectral image. A multispectral image can have multi-
1145 ple bands taken from the visible and invisible (to humans)
1146 spectrum. Examples for the latter are the UV or the IR (ther-
1147 mal) bands. These bands can provide additional important
1148 information but are often viewed separately from the RBG
1149 image. Fig. 16a shows a flower’s RGB image while Fig. 16b
1150 shows its UV radiation image [37]. Likewise, Fig. 16c shows
1151 a terrain RGB image and Fig. 16d shows a portion of the ther-
1152 mal image of the same terrain [39]. Fusing the visible and
1153 invisible channels into a single image can make the informa-
1154 tion more comprehensive. It essentially gives the human eye
1155 super vision, equipping it with the IV vision capabilities of
1156 fish, reptiles, etc. and the IR vision capabilities of snakes, etc.
1157 at the same time. We have studied our system with two
1158 examples of such imagery, presented next.

1159 6.5.1 Flower Data Set

1160 We utilized our tool to fuse the RGB and UV channels of the
1161 flower dataset (FigS. 16a and 16b). Fig. 17 shows the results
1162 we obtained. Comparing the colorization with the channel
1163 images as well as with the RGB and UV images, we can
1164 observe that the fused image has incorporated most if not
1165 all of the detail of these partial images. The local enhance-
1166 ment of the white box on top of the colorization exposes an
1167 interesting UVC irregularity in the top petal. It also shows a
1168 better rendition of the multispectral texture.

1169 6.5.2 Terrain Dataset

1170 Next, we colorized a multispectral terrain image comprised
1171 of three natural channels (RGB) and three thermal channels
1172 (IA, IB, IC). The result is shown in Fig. 18. We observe that
1173 the fused image depicts significantly more detail than the
1174 individual natural and thermal image channels. We can

1175also quite easily pick out the individual channel images in
1176the fused image based on their specific colors. For example,
1177the ocean part has a higher “temperature” than the
1178“mountain” part since its color is more “red”. Finally, in the
1179local enhancement image we can observe a few remarkable
1180hot spots in the mountain area.

Fig. 17. Application to the 6-channel multispectral image of a flower. The
bands are the natural RGB colors and the ultraviolet radiation UVA,
UVB, UVC. The color map uses a more moderate level of stratified sam-
pling to not over-emphasize the outliers.

Fig. 16. Conventional representations of multispectral images. (a) RGB
image of the flower, (b) ultraviolet radiation image of the flower, (c) RGB
image of the terrain, (d) thermal image of the terrain.

Fig. 18. Application to a 6-channel multispectral image of terrain, here an
area around California. The bands are the natural RGB colors and the
thermal with the channels IA, IB, IC.
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1181 7 ASSESSING USER PERFORMANCE AND UTILITY

1182 We gathered insight on the effectiveness of our tool with
1183 respect to two aspects: (1) conciseness of the single-view
1184 ICD-based color encoding (in comparison to the segregated
1185 channel-based color encoding) and (2) utility of the overall
1186 interactive interface and system.

1187 7.1 ICD-Based Encoding of Multivariate Data

1188 To assess the strengths of the ICD-based encoding we con-
1189 ducted a somewhat informal (with respect to the statistical
1190 analysis) user study with 20 participants, recruited from
1191 our campus. These individuals came from various depart-
1192 ments, such as computer science, physics, economics, and
1193 others. None of them was familiar with the types of tools
1194 that were subject of the study, namely, channel-based and
1195 ICD-based visualization of multivariate geo-referenced
1196 data. We started out with a training session to acquaint the
1197 participants with the two visual paradigms. The study was
1198 structured around the pollution dataset and the training
1199 session also educated the participants about the attributes
1200 and setting of this dataset (see Section 3). Questions were
1201 invited and a brief test was given.
1202 In order to neutralize learning effects, the participants
1203 saw a random sequence of six cases with each being either a
1204 set of channel images (segregated view) or an ICD-based
1205 visualization. In each case we marked some area of interest
1206 by a circle and asked: “What are the heaviest pollutants in
1207 the circled area?”
1208 Fig. 19a shows the segregated view while Fig. 19c shows
1209 the colorized image for a different target region. The chan-
1210 nel images were of the same size than the colorized image
1211 in our study. Fig 19b shows the ICD for this dataset. We
1212 purposely left out the scatterplot to enable an unfettered
1213 view onto the color map. We did not provide the mouse-

1214over interaction capabilities to locate the geo-points on the
1215color map. The participants had to make their assessment
1216using color similarity only.
1217At the end of each session we asked each participant
1218which visualization paradigm he or she preferred. We
1219asked “Do you prefer the Colormap-assist view or the segre-
1220gated view?” We gave four options: colormap j segregated
1221j both j none.
1222We found that both our tool and the channel images
1223achieved similar accuracy (95%)—among the 20 � 6 ques-
1224tions, 114 questions are correct. There also was no signifi-
1225cant difference in the time spent for coming up with an
1226answer. The questionnaire, however, revealed that 90% of
1227our users (18 out of 20) preferred the ICD over the set of
1228channel images. We infer from this that looking just at one
1229geo-image (and the ICD) is more convenient than scanning
1230across the eight channel images. We feel that this is a good
1231demonstration of the advantages of our approach with
1232respect to channel scalability.

12337.2 Overall Interactive Interface and System

1234Section 6.1 already reported some feedback we obtained
1235from our collaborating scientists at BNL. All of them
1236thought that our tool was very helpful since it reduced a
1237large amount of tedious image comparison operations to
1238just a few interactions. The linked interaction across the var-
1239ious panels helped them in color classification—they could
1240easily pick the main features from the colorized image and
1241connect them to the channel views. The bar charts helped
1242them especially for areas with subtle color changes. They
1243also thought the local enhancement with the selection inter-
1244action was very useful since they could go back and forth to
1245explore more detailed features in a focused area. All in all,
1246the NSLS-II scientists thought our tool was easy to use and
1247very helpful in expediting scientific discovery.

12488 CONCLUSIONS

1249We have presented an interactive framework, called Color-
1250MapND which fuses principles from high-dimensional data
1251visualization with principles from color science to address
1252the longstanding problem of multi-field data visualization.
1253A key element of our system is a multivariate scatterplot
1254display that is overlaid onto a CIE HCL color map. Using
1255this joint structure, a multivariate pseudo-coloring of the
1256multi-field domain can be consistently obtained. We pro-
1257vide several extensions to this basic framework and apply it
1258to regular and irregularly sampled multivariate domains,
1259multivariate choropleth maps, and multispectral images.
1260We have already mentioned in Section 4.1 that standard
1261color monitors are capable to display colors within the trian-
1262gular sRGB space which exceeds our HCL disk in some CIE
1263LUV space areas and leaves uncovered disk regions in
1264others. The reader is referred to Fig. 2 in the supplement
1265material for a visual depiction of this color space geometry.
1266A possible solution for the former problem would be to pro-
1267vide visual cues, such as a shaded ring segment, to alert
1268users to avoid these locations for the placement of impor-
1269tant primaries. Alternatively, these colors can always be
1270recovered on the fly by ways of our color contrast enhance-
1271ment facility (within the extent of the sRGB color space).

Fig. 19. User study setup (a) Segregated channel view display the cir-
cled region denotes the target. (b) ICD without scatterplot, just HCL color
map; (c) Colorized domain with circled target region.
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