
Fig. 1 The interface of our system demonstrating the linked display functionality – the highlighted parts are linked with the chosen area. 
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ABSTRACT 
Contextual layouts preserve the context of the data with the associ-
ated attributes (variables). However, their linear mapping causes 
errors in the layout – similar data points and variable nodes may not 
map to similar regions, and vice versa. In this paper, we first unify 
the various data layout schemes and choose the Generalized Bary-
centric Coordinates (GBC) plot as the standard way to describe 
them. Second, we propose three algorithms – distance spaced lay-
out, iterative error reduction, and force directed adjustment – to 
reduce the layout error of variables to variables, data to variables 
and data to data, respectively. We find that the combination of these 
three algorithms can yield large improvements in the layout error 
and so achieve a more comprehensive layout. Third, we describe an 
interface, the GBC Error Explorer, which allows users to explore 
the error using a variety of visualization schemes combined with 
some interactions.  
Keywords: Visual analytics, generalized barycentric coordinates, 
multivariate data, contextual layout. 
Index Terms:  H.5.2 [Information Interfaces and Presentation]: 
User Interfaces - Graphical user interfaces (GUI), I.3.6 [Computer 
Graphics]: Methodology and Techniques - Interaction Techniques 

1 INTRODUCTION 
Numerous methods have been described for the data matrix visuali-
zation. Methods that solely support the identification of clusters and 
their outliers, such as multidimensional scaling (MDS) [11] or t-
SNE [8] are typically oblivious to the attributes of data. But there 
are settings in which it can be of interest to see the data points in 
relation to their attributes. For example, an investor might want to 
see companies in context of the value metrics of their stocks, such 
as earnings per share, price to earnings ratio, etc. This investor 
would pick those stocks that best fit his strategies. Such operations 
are not supported by MDS or t-SNE.  

Visualization can be a good medium to first assess the overall da-
ta, here the stock market, and then focus on the market segment of 
interest – a class of stocks with the certain desirable constellation of 
metrics. There are multiple ways to achieve this. In the method of 
parallel coordinates [6], the attributes define the vertical axes and 
the data points form piecewise linear lines going across these axes, 
called polylines. The investor would then filter the stocks along his 
or her most salient metrics and so isolate the most desirable stocks.  
     Another method lays out the data points in the context of the 
attributes, and we shall refer to them as contextual data layouts. In 
these methods, the attributes form special nodes on the data canvas 
where data points that are ‘stronger’ in certain attributes also come 
to rest more closely to these attributes (although there can be signif-
icant errors – see below). Examples of these types of visualizations 
are RadViz [14], Star Coordinates [10], and Gravi++ [15]. In this 
case, the investor would focus on the attribute nodes of greater 
interest and look at the data points in their neighborhoods. The 
investor would also be able to assess and recognize conflicts in his 
set of criteria. There might be no stocks that can fulfill two compet-
ing criteria and so he or she would have to make certain trade-offs. 
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While the contextual layouts are convenient in that they do not 
require much filtering, they require other types of interaction, most-
ly to reduce the errors that result from the attracter/deflector spring-
like layout schemes. Often data points that are not related at all 
come to rest very closely to one another, and moving the attribute 
points in an interactive fashion can reduce, but not completely elim-
inate this error, at least not in general.     

Our work focuses on contextual layout displays and the errors 
they commit. We find they are all special forms of the GBC plot 
[12][13] - the attributes constitute the vertices of a D-sided polygon 
(where D is the number of attributes) and the data points are placed 
in its interior. However, even the GBC plot does not preserve accu-
rate relations between the data and the attribute points, and to ad-
dress this problem we describe a set of practical algorithms which 
automatically adjust the locations of both data and attribute points 
such that these relations are better preserved. Finally, we provide an 
interface that allows users to explore the various layout errors using 
different visualization schemes augmented with interactions. 

Our paper is structured as follows. Section 2 presents related 
work. Section 3 provides theoretical aspects. Sections 4 and 5 de-
scribe the GBC plots and our various layout improvements. Section 
6 presents an evaluation. Section 7 describes our diagnostic inter-
face for parameter tuning. Section 8 ends with conclusions. 

2 RELATED WORK 
The visualization of high-dimensional datasets essentially follows 
three major paradigms – parallel coordinates, scatterplots, and 2D 
space embeddings. Since the visualization of high-dimensional data 
on a 2D canvas is inherently an ill-posed problem, there is no meth-
od without drawbacks. Parallel coordinates, and its radial version, 
the star plot [2], have the least ambiguity in the 2D mapping pro-
cess and the serialization of the high dimensional space into the 
parallel axis configuration allows all attributes to be seen at once. 
However, the overplotting of polylines can become a significant 
problem once the number of data points grows moderately large.  

Scatterplots suffer less from overplotting, but the projection op-
eration can lead to ambiguities as points located far away in high-
dimensional space may project to similar 2D locations. Assembling 
all possible axis-aligned scatterplots into a scatterplot matrix [4] or 
supporting the projections by an interactive view manipulation 
system [12] can help but both require effort to navigate. Similar to 
the star plot, the method of star coordinates [10] arranges the attrib-
ute axes in a radial fashion but instead of constructing polylines it 
plots the data points as a vector sum of the individual axis coordi-
nates. However the locations of the data points are not unique and 
so an interactive interface is provided that allows users to manually 
rotate and scale axes to resolve ambiguities, at least partially.  

Many of the ambiguity problems can be overcome by embedding 
the high-dimensional space onto a 2D canvas via an optimization 
strategy (MDS, t-SNE, etc.) which seeks to preserve the high di-
mensional distances – or the statistics – of all point-pairs in the 2D 
layout. In this way the viewer can easily appreciate neighborhood 
relations and obtain a good overview of the space quickly. However, 
as mentioned, this method also has shortcomings – the mapped data 
points no longer maintain any context with the attributes as this 
information is typically not preserved in the non-linear mapping. 
We also use optimization for the 2D layout but retain this context.  

Our method generalizes systems that arrange the nodes represent-
ing the attributes along a convex shape and lay out the data points 
in the interior of this shape. RadViz [3] uniformly spaces the attrib-
utes as dimensional anchors along the circumference of a circle. 
The location of the data points is then determined by a weighting 
formula where data point attributes with higher values receive a 
higher weight and so increase the attraction of the point to the cor-

responding anchor points. However, similar to star coordinates, this 
can lead to location ambiguities which can be reduced by re-
ordering the anchor points manually or algorithmically. Gravi++ 
[14] uses a different weighting formula but also spaces the attrib-
utes at uniform distances onto an encompassing circle. In GBC[13] 
the enclosing primitive is a general convex polygon for the visuali-
zation [12]. Finally, even more general is the Dust & Magnet sys-
tem [16] which allows one to move and adjust the weights of the 
attributes. None of these methods can guarantee nearby data and 
variables points are actually neighbors in high-dimensional space. 

3 THEORETICAL CONSIDERATIONS 
Let 𝐷𝑀 be the data matrix with 𝑚 rows and 𝑎𝑎 columns, 

𝐷𝑀 = �
𝑥11 ⋯ 𝑥1𝑛𝑛
⋮ ⋱ ⋮

𝑥𝑠𝑠1 ⋯ 𝑥𝑠𝑠𝑛𝑛

� 

where the rows denote the data points, the columns denote the at-
tributes and 𝑥𝑖𝑖𝑗𝑗  is the data value in the 𝑖𝑖th row and 𝑗th column. 
Without loss of generality, we assume 𝐷𝑀 is normalized to [0, 1]. 
Let D be the data points (we shall simply refer to them as data): 

𝐷𝑖𝑖 = [𝑥𝑖𝑖1, 𝑥𝑖𝑖2, … , 𝑥𝑖𝑖𝑛𝑛]             (𝑖𝑖 = 1,2, … ,𝑚) 

Let 𝑉𝑉 be the data attributes (we shall refer to them as variables).  

𝑉𝑉𝑗𝑗 = [𝑥1𝑗𝑗 , 𝑥2𝑗𝑗 , … ,𝑥𝑠𝑠𝑗𝑗]𝑇              (𝑗 = 1,2, … ,𝑎𝑎) 

where T is the transpose function. 
The methods we discussed above map data and variables into 2D 

layout space. We denote 𝐸𝐸 and 𝑣𝑣 as their locations respectively. 

3.1 The Space of Contextual Layout Methods 
Table 1. The features of different layout methods 

Method VF(𝑣𝑣𝑖𝑖) MF (𝐸𝐸𝑖𝑖) 

Radviz 𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝑖𝑖

2𝜋𝜋 , 𝑟𝑟 ∙ sin
𝑖𝑖

2𝜋𝜋� �
𝑥𝑖𝑖𝑗𝑗

∑ 𝑥𝑖𝑖𝑘𝑛𝑛
𝑘=1

𝑣𝑣𝑗𝑗
𝑛𝑛

𝑗𝑗=1
 

Star Co-
ordinates 

𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋� 

Or other 
� 𝑥𝑖𝑖𝑗𝑗𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1
 

Gravi++ 𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋� 

Or other free layout 

�
𝑐𝑐𝑗𝑗𝑥𝑖𝑖𝑗𝑗

∑ 𝑐𝑐𝑘𝑥𝑖𝑖𝑘𝑛𝑛
𝑘=1

𝑛𝑛

𝑗𝑗=1
∙ 𝑣𝑣𝑗𝑗 

Dust & 
Magnet 

𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋� 

Or other free layout 
� 𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑖𝑖𝑗𝑗 ∙ 𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1
 

GBC 𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋� 

Or other convex polygon 
�

𝑥𝑖𝑖𝑗𝑗
∑ 𝑥𝑖𝑖𝑘𝑛𝑛
𝑘=1

𝑣𝑣𝑗𝑗
𝑛𝑛

𝑗𝑗=1
 

Remarks 
𝜃1 + ∑ (𝜃𝑗𝑗 − 𝜃𝑗𝑗−1)𝑛𝑛

𝑖𝑖=2 = 2𝜋𝜋 . 𝑐𝑐𝑗𝑗  stands for the 
strength multiplicator of 𝑣𝑣𝑗𝑗 .  𝑎𝑎𝑖𝑖𝑗𝑗  is the attraction 
between dust i and magnet j.  𝑟𝑟 is the circle radius. 

We argued Radviz, Star Coordinates, Dust & Magnet, and Gravi++ 
are similar - they all arrange the variables as vertices in the outward 
periphery of the data points, providing context. To unify them into a 
common framework, we need a unified notation. We consider two 
factors: (1) the layout method for the variables vertices, 𝑉𝑉𝐹𝐹, and (2) 
the data mapping function 𝑀𝐹𝐹, shown for all methods in Table 1. 

For VF, a circular layout is most common, so for this paper, we 
only consider this type of arrangement for the variables. The 𝑀𝐹𝐹 
function, on the other hand, uses slightly different forms of weights 
to compute the variable node locations. The mapping concept is



 Fig. 2 The GBC Plot. 
  

identical – all apply a linear function – just some methods perform 
normalization and others do not.  

 While the GBC as described in [12] is more flexible in that it 
supports generalized polygons, we use it as the standard configura-
tion – a polygon embedded into a circle – to describe the other lay-
out algorithms. The GBC plot on an equilateral polygon is essen-
tially Radviz. We begin with this plot and generalize to others. 

4 THE GENERALIZED BARYCENTRIC COORDINATES (GBC) PLOT 
The GBC plot is derived from GBC interpolation [12] which ex-
tends the method of barycentric inter-
polation from triangles to multi-vertex 
convex polygons. The task is to inter-
polate the value of an interior point P 
from the values stored at the polygon 
vertices vi. Referring to Fig. 2, the 
interpolation weight wi of vi for P is: 

               𝑤𝑖𝑖 = cot(𝛼)+cot (𝛽)
‖𝑃−𝑣𝑖𝑖‖2

                                                      

The interpolated value Pv at P is: 
𝐸𝐸𝑣𝑣 = ∑ 𝑤𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1  where 𝑎𝑎𝑖𝑖 = 𝑤𝑖𝑖 ∑ 𝑤𝑘𝑛𝑛
𝑘=1⁄  and ∑ 𝑎𝑎𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1  

The GBC plot uses GBC interpolation in reverse fashion. It seeks to 
compute the position of P in a convex polygon in which each vertex 
is assigned to one of the attributes. This replaces Pv by the 2D vec-
tor P, and the vi by the 2D coordinates of the attribute vertices. We 
then set the weights to be the values of the n-dimensional vector, 
normalize them to compute the 𝑎𝑎𝑖𝑖, and finally use the 2D coordi-
nates of the attribute vertices to interpolate the 2D coordinate of P.  

4.1 The Distance Matrix 
The GBC plot can show the distances of data to data, data to varia-
ble and variable to variable. The combination of distance matrices 

𝐶 = {𝐷𝐷,𝐷𝑉𝑉,𝑉𝑉𝑉𝑉} 
where 𝐷𝐷, 𝐷𝑉𝑉 and 𝑉𝑉𝑉𝑉 store the pairwise distance of data points, 
data points to variables and variables respectively.  

As mentioned, there are various measures which are suitable to 
express distance. We would like to choose the Euclidean Distance 
for DD. For DV, it is good to use the value at this dimension. How-
ever, we should use 1-vaule since distance and value have opposite 
meaning. For VV, we would like to pick 1- correlation. Let 𝐹𝐹 be the 
set of Distance Metrics, then  

𝐹𝐹 = {𝐸𝐸𝑢𝑐𝑐𝑎𝑎𝑖𝑖𝑑𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝑖𝑖𝑐𝑐𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 |1− 𝑣𝑣𝑎𝑎𝑢𝑎𝑎𝑎𝑎 |1−  𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑖𝑖𝑐𝑐𝑎𝑎}      (1) 

4.2 GBC Layout Error 
The GBC plot can show the distances of data to data, data to varia-
ble and variable to variable, thus the error also combines these three 
types. We denote 𝐸𝐸 as the error, where 𝐸𝐸𝐷𝐷𝐷𝐷, 𝐸𝐸𝐷𝐷𝑉𝑉 and 𝐸𝐸𝑉𝑉𝑉𝑉 represent 
the error of data to data, data to variable and variable to variable 
respectively; 𝐸𝐸𝐴𝐴 is the overall error of the GBC mapping. For more 
details about the definition, see Section 6. In addition, there is also 
the error resulting from the GBC layout itself. We will discuss how 
to deal with this kind of error in Section 7. 

5 OUR GBC EXTENSIONS FOR MORE ACCURATE LAYOUTS 
As discussed, the GBC plot has errors –𝐸𝐸𝐷𝐷𝐷𝐷, 𝐸𝐸𝐷𝐷𝑉𝑉 and 𝐸𝐸𝑉𝑉𝑉𝑉. To re-
duce the error, we first analyse and reduce each type of error sepa-
rately, and then combine these effects together to reduce 𝐸𝐸𝐴𝐴. 

5.1 Test Datasets 
We chose the following data sets to demonstrate our algorithms: 

1. Cars dataset – 392 cars with 7 attributes. 
2. Sales campaign dataset – 600 data items with 10 attributes. 
3. Bike dataset –17,389 instances with 16 attributes. 
The GBC layouts for these datasets are shown in Fig. 9 (a).   

5.2 Distance Spaced GBC Plot Layout (DGBC) 

We begin with the 𝐸𝐸𝑉𝑉𝑉𝑉. The variables are arranged around the circle 
– this type of layout maps the data from high dimension to one 
dimension. One way to achieve this is by projecting the distance 
matrix into 1D using MDS. However, we cannot guarantee this 
method provides a good ordering since MDS becomes increasingly 
error-prone as the distance matrix increases.   

Another and more direct way to obtain a linear ordering of the 
vertices on the polygonal hull is by arranging the vertices through 
an approximate Traveling Salesman Problem (TSP) solver that 
operates on the matrix of pairwise correlation distances among the 
variables. It would choose the minimum length edge as the start 
edge and keep adding the nearest variables to the endpoints. TSP 
has been successfully employed to determine a good axis ordering 
for parallel coordinates [18]. The application for the current case is 
similar – it also uses the similarity of variables to provide an order-
ing, but now we also space them apart according to the similarity.   

We place all attribute vertices on a circle, ordered by the dis-
tance-based TSP solver and spaced apart by the pairwise distances. 
The process is illustrated in Fig. 3 and the algorithm is given in 
Algorithm 1. Fig. 9 (second column) shows the outcome of this 
experiment for the three datasets we tested. We observe a much 
improved class separation for all of them. We also observe, from 
Table 2, that the error of variable to variable is reduced. 

Input: The distance matrix (VV) 
Output: The variables locations v 
 1:  V=TSP(VV) //Reorder the variables. 𝑉𝑉𝒩𝒩(𝑖𝑖) is the circle 
 2:  sumVV=∑ 𝐹𝐹(𝑉𝑉𝑖𝑖 ,𝑉𝑉𝒩𝒩(𝑖𝑖))𝑛𝑛

𝑖𝑖=1  // layout neighbour of 𝑉𝑉𝑖𝑖 . 
 3:  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0 = 0                          
 4:  for  𝑖𝑖 = 2:𝑎𝑎 
 5:        𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖−1 + 2𝜋𝜋 𝐹𝐹(𝑉𝑉𝑖𝑖,𝑉𝑉𝒩𝒩(𝑖𝑖))

𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑉𝑉
 

 6:  endfor 
 7:  for 𝑖𝑖 = 1:𝑎𝑎  // Lay out the variables around the circle. 
 8:        𝑣𝑣𝑖𝑖𝑥𝑥 = 𝑟𝑟 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)     
 9:        𝑣𝑣𝑖𝑖𝑦𝑦 = 𝑟𝑟 ∙ 𝑐𝑐𝑖𝑖𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) 
10: endfor 

 

Algorithm. 1 Distance Based Layout. 

Fig. 3 Distance Spaced Layout Pipeline  



5.3 Iterative GBC Plot Error Reduction (IGBC) 
Next we aim to reduce 𝐸𝐸𝐷𝐷𝑉𝑉. In the GBC plot, a data point’s value 
can be gauged by its location – if it is located close to a given vari-
able point then it has a high value in the corresponding attribute, 
and vice versa. Hence, each variable point has a set of iso-contours 
where a data point’s value is constant. In this paper, we restrict our 
study to linear contours, but an extension to non-linear contours 
would follow similar error-reduction principles.  

Our method seeks to reconstruct an error polygon for each data 
point and iteratively reduces the size of this polygon. Fig. 4 pro-
vides an illustration and Algorithm 2 lists the pseudo code.  

 
The first assumption our algorithm makes is the existence of a set 

of distance contours that encode the importance of a variable to a 
given data point. Suppose we have the variables vertices 
𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3,𝑣𝑣4, 𝑣𝑣5  and a test data item (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ) with its 
mapping location as P.  Fig. 4 examines the distance contours for 
𝑉𝑉4. Assuming the data item has been normalized to a unit vector, 
the maximum importance a variable can have is 1.0. This would 
mean in the case examined that 𝑥4=1.0 and so P would coincide 
with 𝑣𝑣4  in the plot. In contrast, if 𝑥4=0.0 which is the minimum 
importance, then with the current vertex ordering P would need to 
fall on the edge 𝑣𝑣5𝑣𝑣1, 𝑣𝑣1𝑣𝑣2 or 𝑣𝑣2𝑣𝑣3. Any other value would lead to 
a placement of P onto some contour in between. Fig. 4 shows the 
contour 𝑄5𝑄1𝑄2𝑄3������������� for 𝑥4=0.6. It is constructed by connecting v4 
with all vertices vi and marking the points 𝑄𝑖𝑖  where (𝑣𝑣4𝑄𝑖𝑖  )/
(𝑣𝑣4𝑣𝑣𝑖𝑖) = 1 − 0.6. Connecting these points yields the contour.  

Next we find 𝑣𝑣4 on the error polygon (marked as 𝐸𝐸𝐸𝐸4) by inter-
secting the contour with the line that connects 𝑣𝑣4 with P. Perform-
ing this procedure for all variables yields all vertices of the error 
polygon (marked as polygon 𝐸𝐸𝐸𝐸1𝐸𝐸𝐸𝐸2𝐸𝐸𝐸𝐸3𝐸𝐸𝐸𝐸4𝐸𝐸𝐸𝐸5������������������������ ). The iterative 
step concludes by moving P into the center of the error polygon, 
marked as P’, and then a new iteration begins. 

In practice, we iterate about 20 times which completes in a cou-
ple of seconds and so does not cause a significant performance 
drop. The result of this algorithm is shown in Fig. 9 (third column). 
We observe the IGBC scheme also brings improvements in terms of 
cluster separation, but not as strong as DGBC. 

The change of error is shown in Fig. 5. We observe that 𝐸𝐸𝐷𝐷𝑉𝑉 
converges for all three test data sets. But we also see here (and in 
Table 2) this optimization scheme yields large improvements only 
for the car and bike data but not for the sales campaign data. This is 
because the campaign data is already well distributed (see Fig. 1).  

5.4 Force Directed GBC Plot Adjustment (FGBC) 
What remains is the 𝐸𝐸𝑉𝑉𝑉𝑉. We can adjust the locations of the data 
points via traditional MDS to reduce this error. A popular MDS 

 

Fig. 4 The error polygon  
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Input: DV, P, v, error threshold, maximum iterations . 
Output: the data points locations. 
  1:   while  𝐸𝐸𝐷𝐷𝑉𝑉< threshold || 𝐼𝐼𝐷𝐷𝑉𝑉> max-threshold 
  2:      for each data point P 
  3:             for each variable vertex vj   
  4:                 Compute distance contour. 
  5:                 Compute error polygon vertex 𝐸𝐸𝐸𝐸𝑗𝑗 . 
  6:             endfor 
  7:       Construct error polygon EP formed by all 𝐸𝐸𝐸𝐸𝑗𝑗  . 
  8:       Move P to the center of EP. 
  9:      endfor 
10:    Compute 𝐸𝐸𝐷𝐷𝑉𝑉 and iterations 𝐼𝐼𝐷𝐷𝑉𝑉 . 
11:  endwhile 
 

Algorithm. 2. Iterative Error Reduction. 

    Algorithm. 3.  Force Directed Adjustment 
 Input: DD, P, v, error threshold, maximum iterations. 

Output: the data points locations. 
1:   if 𝐸𝐸𝐷𝐷𝐷𝐷< threshold || 𝐼𝐼𝐷𝐷𝐷𝐷> max-threshold, return.  
2:       for each data point Di 
3:            Compute the forces 𝑓𝑓𝑗𝑗  according to the error.  
4:            Compute the resultant force 𝑓𝑓𝑠𝑠 = ∑ 𝑓𝑓𝑗𝑗𝑠𝑠

𝑗𝑗=1 . 
5:            Compute the acceleration by the force. 
6:            Move this data point for some period. 
7:      endfor 
8:    Compute the error 𝐸𝐸𝐷𝐷𝐷𝐷 and iterations 𝐼𝐼𝐷𝐷𝐷𝐷. 
9:  endif 

 

Fig. 5  The change of the data to variable error.  

Fig. 6 The change of the data to data error.     



Fig. 8 The error development over the course of the correction.  
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scheme is force directed layout [7][5][18]. It iteratively displaces 
data points until all pair-wise distances in the layout match those in 
high-dimensional space with minimal error. 

In our particular implementation, we construct a network where 
the vertices correspond to the data points and the edges are springs. 
(see Fig. 7). Suppose A, B, C, D, E are the fixed data points and P is 
the point whose location we plan to adjust. P has two types of dis-
tances to these five points: (1) the high-dimensional space distances 
and (2) the 2D layout distances. Their difference forms the error 
and we should move P in a direction that reduces this error the most. 
The algorithm sets the difference as a force – either drag or push – 
in each vertex direction. We use 𝑓𝑓𝐴𝐴, 𝑓𝑓𝐵, 𝑓𝑓𝐶 , 𝑓𝑓𝐷𝐷 and 𝑓𝑓𝐸 to denote the 
force vectors from each vertex and they together form an aggregate 
force as 𝑓𝑓𝑆 to move P.  The algorithm is given in Algorithm 3.  

The results of this algorithm for our data sets are shown in Fig. 9, 
fourth column, and the change is listed in Fig. 6. We observe 𝐸𝐸𝐷𝐷𝐷𝐷 
converges. Table 2 reveals this scheme yields large improvements 
in 𝐸𝐸𝐷𝐷𝐷𝐷 for the car and the campaign data but not for the bike data.  

 

5.5 Comprehensive Layout (DIFGBC) 
The previous sections described the three algorithms {D, I, F} GBC  
to reduce three types of error. Now, to reduce the overall error, we 
need to combine them into a single algorithm. The problem is to 
determine the order of the three algorithms since they can affect 
each other. In practice we fix the variables first (with DGBC) since 
this provides a mapping that is more accurate than the one obtained 
when the mapping error is reduced first. After running DGBC, we 
have a choice between first moving the data points with respect to 
the variable (IGBC) and then adjusting the data points with respect 
to each other (FGBC), or vice versa. There is no clear intuition 

which order would be better, but for all datasets we tried, the for-
mer order gave better results.  We therefore use this order – DGBC, 
IGBC and FGBC – refer as DIFGBC. The final column of Fig. 9 
shows the outcome. We observe the layout has inherited improve-
ments from three schemes, but the effects of DGBC are strongest.   

Finally, the change of the error is shown in Fig. 8 and Table 2. 
We can see when DGBC runs, the 𝐸𝐸𝑉𝑉𝑉𝑉 reduces sharply; then IGBC 
yields a large improvement of 𝐸𝐸𝐷𝐷𝑉𝑉; finally, FGBC reduces the 𝐸𝐸𝐷𝐷𝐷𝐷. 
We can also observe when IGBC and FGBC are running, they will 
somewhat increase the 𝐸𝐸𝐷𝐷𝐷𝐷  and 𝐸𝐸𝐷𝐷𝑉𝑉  respectively. There exists a 
trade-off – we usually pay more attention to the 𝐸𝐸𝐷𝐷𝑉𝑉  – run the 
IGBC first, and then FGBC later for small adjustments. The order 
of the three adjustments can be altered if user has different priorities. 

The 𝐸𝐸𝑉𝑉𝑉𝑉 has higher error than 𝐸𝐸𝐷𝐷𝑉𝑉 and 𝐸𝐸𝐷𝐷𝐷𝐷 since GBC maps the 
variables to 1D but the other two maps to 2D. But 𝐸𝐸𝐷𝐷𝐷𝐷 and 𝐸𝐸𝐷𝐷𝑉𝑉 are 
also important – they can preserve the accurate data distribution etc. 

6 EVALUATION 
To gauge the quality of a layout, we use the normalized stress met-
ric between 𝐿, the matrix of low-dimensional distances 𝐿𝑖𝑖𝑗𝑗, and 𝐶, 
the matrix of high-dimensional distances 𝐶𝑖𝑖𝑗𝑗: 

                                       𝑐𝑐𝑡𝑟𝑟𝑎𝑎𝑐𝑐𝑐𝑐(𝐿, C) = �
∑ (𝐿𝑖𝑖𝑗−𝐶𝑖𝑖𝑗)2𝑖𝑖𝑗

∑ 𝐶𝑖𝑖𝑗
2

𝑖𝑖𝑗
                          (2) 

We use this stress metric to gauge  𝐸𝐸𝐷𝐷𝐷𝐷, 𝐸𝐸𝐷𝐷𝑉𝑉 , and 𝐸𝐸𝑉𝑉𝑉𝑉. Each, how-
ever, uses a different distance metric for C, set by F in equation (1). 

6.1 Data to Data Error 
The 𝐸𝐸𝐷𝐷𝐷𝐷 is due to the difference between L and C. For L and C, we 
both use Euclidian distance. Now suppose ‖∙‖  is the Euclidean 
distance. We compute the normalized form of each distance as 

𝐶𝑖𝑖𝑗𝑗 =  𝐹𝐹�𝐷𝑖𝑖 ,𝐷𝑗𝑗� ∑ 𝐹𝐹(𝐷𝑖𝑖 ,𝐷𝑘)𝑠𝑠
𝑘=1�      

𝐿𝑖𝑖𝑗𝑗 = �𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑗𝑗� ∑ ‖𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑘‖𝑠𝑠
𝑘=1�  

6.2 Data to Variable Error 
The GBC plot uses F = (1 - Value) for C – a Cij is the jth dimension 
value of the ith data as 𝐹𝐹(𝐷𝑖𝑖 , 𝑉𝑉𝑗𝑗). An Euclidian (type) distance for L. 
However, since the location of the data point is defined by the con-
tour – it uses �𝐸𝐸𝐸𝐸𝑗𝑗 − 𝑣𝑣𝑖𝑖� to represent 𝐹𝐹(𝐷𝑖𝑖 , 𝑉𝑉𝑗𝑗), we need to use a 
scale ratio 𝛼𝑖𝑖𝑗𝑗 for 𝐷𝑖𝑖 in the variable 𝑉𝑉𝑗𝑗  

Fig. 7 The force directed adjustment   



Fig. 10  The error distribution with (a) the car data (b) the campaign data (c) the bike data. Brighter red tones correspond to high value. 

(a) (b) (c) 

 

𝛼𝑖𝑖𝑗𝑗 = �𝐸𝐸𝐸𝐸𝑗𝑗 − 𝑣𝑣𝑖𝑖� 𝐹𝐹(𝐷𝑖𝑖 , 𝑉𝑉𝑗𝑗)�                                     (3) 

Then the real distance and mapped distance can be obtained as 
𝐶𝑖𝑖𝑗𝑗 = 𝛼𝑖𝑖𝑗𝑗𝐹𝐹(𝐷𝑖𝑖 ,𝑉𝑉𝑗𝑗)      𝐿𝑖𝑖𝑗𝑗 = �𝐸𝐸𝑖𝑖 − 𝑣𝑣𝑗𝑗� 

6.3 Variable to Variable Error 
This error uses F = 1 - Correlation for C. For L, since the GBC 
places the variables around the circle, we can use the arc length to 
measure the distance between two variables. The sum of distances 
of neighboring variables around the circle is its perimeter:  

∑ 𝑣𝑣𝑘𝑣𝑣𝒩𝒩(𝑘)�𝑛𝑛
𝑘=1 = 2𝜋𝜋𝑟𝑟                                 (4) 

where 𝑣𝑣𝒩𝒩(𝑘) is the neighbor point in the counterclockwise of 𝑣𝑣𝑘 . 
However, in the variable to variable distance, we cannot guarantee 
the sum of the neighbor variables distances satisfies condition (4), 
so we define a scale ratio 𝛽: 

                            𝛽 = 2𝜋𝜋𝑟𝑟 ∑ 𝐹𝐹�𝑉𝑉𝑘 ,𝑉𝑉𝒩𝒩(𝑘)�𝑛𝑛
𝑘=1⁄                              (5) 

Then the real and mapping distance can be obtained as: 

𝐶𝑖𝑖𝑗𝑗 = 𝛽𝐹𝐹(𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗)         𝐿𝑖𝑖𝑗𝑗 = �𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗� (arc length)                                                                           

Fig. 9 The GBC error reduction with car data (first line), campaign data (second line) and bike data (third line). The color shows the k-
means clusters [9] in the high dimensional distances. The columns are GBC, DGBC, IGBC, FGBC, DIFGBC in order. 
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6.4 Overall Error 
As suggested in Section 5.5, users may have different priorities in 
the types of distances. Apart from algorithm ordering, we can also 
express these by giving different weights to the three distances. The 
overall error is then defined as follows:          

      𝐸𝐸𝐴𝐴 = 𝑤𝐷𝐷𝐷𝐷𝐸𝐸𝐷𝐷𝐷𝐷 + 𝑤𝐷𝐷𝑉𝑉𝐸𝐸𝐷𝐷𝑉𝑉 + 𝑤𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉                        (6) 

As was also suggested in Section 5.5, these priorities are likely 𝐸𝐸𝑉𝑉𝑉𝑉, 
then 𝐸𝐸𝐷𝐷𝑉𝑉 followed by 𝐸𝐸𝐷𝐷𝐷𝐷 and so we set 𝑤𝐷𝐷𝐷𝐷:𝑤𝐷𝐷𝑉𝑉:𝑤𝑉𝑉𝑉𝑉 = 2: 4: 8.  

6.5 The Error Distribution Display 
To give the user an overview of the error distribution, we provide a 
visualization of it (see Fig. 10). We color each data and variable 
point as a function of its overall error. In this way the features of the 
error distribution can be easily identified. From Fig. 10, we can see 
the data points close to the center of the GBC plot have a high error.  

       

7 THE GBC ERROR EXPLORER 
As mentioned before, these types of layouts all suffer from a com-
mon problem – the data overlap error (different points have the 
same position). This kind of error, to the best of our knowledge, is 
hard to reduce. Springview [1] allows for simultaneously viewing 
both RadViz and parallel coordinates for view optimization and 
clutter reduction. We extend this idea and allow users to discover 
the error by combining different visualization methods into a diag-
nostic parameter tuning interface – GBC Error Explorer (Fig. 1). 

Our GBC Error Explorer provides an interactive visual analytics 
interface to provide the insight. Its interface features the following 
components: parallel coordinate display, distance heatmap, layout 
display, error Vis panel and configuration control panel. 

The parallel coordinates display provides an overview of the data 
to help users understand the data values. The distance heat map 
visualizes the distance matrix. The layout display is the main part of 
our system – it shows the layout of the distance matrix. The error 
Vis panel visualizes the error of the layout. Finally, the configura-
tion control panel allows users to manipulate the various parameters.   

7.1 The Configuration Control Panel 
This control panel contains five major groups: parameter configura-
tion, layout mode, layout color mode, error visualization panel col-
or mode and PC line mode.   

The parameter configuration group allows users to set the dis-
tance metric for each distance sub-matrix: Euclidean (E), correla-
tion (C), value (V). The layout mode group enables users to choose 

the layout strategy. The layout color mode error color mode define 
the color for layout and error respectively. Finally, the PC line 
mode enables users to pick the line mode of the parallel coordinates.  

7.2 The Heat Map Displays 
The Distance Heatmap 
The heatmap displays on the left visualizes the distance matrix 
colored using the color bar. We provide the distance matrices DD, 
DV and VV. However, to lay them as a unit block and maintain the 
symmetry, we like to add one more sub-matrix VD to store the dis-
tance of variables to data - same as DV (Fig. 1). We find the data 
are tightly distributed into 3 groups since we find the three blocks. 

The Error Vis Panel 
The heat map on the right is the error Vis panel. Since the data ma-
trix usually has less variables than data, it is important to know the 
variables error. Thus, our error Vis panel shows the 𝐸𝐸𝐷𝐷𝑉𝑉  and 𝐸𝐸𝑉𝑉𝑉𝑉 
vertically with the average (𝐸𝐸𝐷𝐷𝑉𝑉�����̈  and 𝐸𝐸𝑉𝑉𝑉𝑉�����) on the right border. See 
Fig. 1. We find the data has higher error with the variable “PROI”. 

7.3 The Parallel Coordinate Display  
The parallel coordinate display shows the data to their dimensions. 
We have different line modes - straight lines can give users a direct 
way to see the data, while curve lines are better for the clutter [17].  

7.4 Interactions 
Our interface provides several types of interactions that manipulate 
the layout display. Some of these interactions allow users to appre-
ciate the layout errors directly in the display. Others allow filtering 
operations such as zooming. Considering the different feathers of 
the data, we apply different techniques to them. 

7.4.1  Verification coloring 
Distance Color   
Fig.  11 a shows our system’s capability to visualize the true high-
dimensional distances with respect to a user-selected variable 
(green box) by intensity-shading all points in terms of that distance. 
An irregular or adverse shading pattern would point to problems, 
which is not the case for the chosen example. We can clearly see 
the car has three types of “origin”- from the different color levels. 

Error Color   
Likewise,  Fig.  11 b shows the point-wise layout error with respect 
to the selected variable (green box). Here we see that the points in 
the center seem to have a larger layout error– similar conclusion we 
got from Fig. 10 (a).  

 

7.4.2 Linked displays 
Our system also supports linked displays. Users can select a subset 
of the data in one display and see these in other displays. When we 
look at the campaign data matrix in the GBC layout, we find they 

Table 2. The error reduction table 

Error Layout Car Campaign Bike 

𝐸𝐸𝑉𝑉𝑉𝑉 
GBC 0.65 2.14 2.91 

DGBC 0.34 0.33 1.62 
Reduce 49% 85% 44% 

𝐸𝐸𝐷𝐷𝑉𝑉 
GBC 0.39 0.44 0.49 
IGBC 0.29 0.43 0.35 

Reduce 25% 2% 29% 

𝐸𝐸𝐷𝐷𝐷𝐷 
GBC 0.29 0.4 0.45 

FGBC 0.23 0.25 0.43 
Reduce 28% 62% 5% 

𝐸𝐸𝐴𝐴 
GBC 0.53 1.41 1.87 

DIFGBC 0.3 0.31 1.09 
Reduce 44% 78% 41% 

 

Fig.  11 Verification coloring of (a) distance and (b) error. 
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distribute well as three clear clusters. But we might want to know 
the details of them.  See Fig. 1. We can confirm the yellow group 
points are close to each other with similar error (from heatmaps) 
and the variances (from parallel coordinates).  

7.4.3 Local layout refinement 
The layout can often improve locally if one restricts it to just this 
region and corresponding high-dimensional subspace. We support 
two types of local refinements – data-centric and variable-centric. 

Data-centric refinement 
In the data-centric refinement, the user draws a box in the layout 
display – such as the green box in Fig. 12a – and then only these 
data points are included into a focused layout. We saw in Fig. 9c 
the bike dataset had data points near the center with large error. We 
select this region and lay out only the points inside it. See Fig. 13b. 
Now these clusters are much clearer and more defined.  

Variable-centric refinement 
Conversely, users also draw a box (see the blue one) into the layout 
display but now only the variables inside this box. This is essential-
ly a subspace selection (see Fig. 12 b).  Suppose we wish to know if 
the bikers are affected by the temperature easily. So we choose a 
subspace with the related variables, such as temperature, count etc. 
See Fig. 13. We find the variables form three groups representing 
the temperature, the number of bike and casual factors respectively. 

 

8 CONCLUSION 
We have presented a framework that can improve the fidelity of 
contextual data layouts, in order to better convey the relations of 
data items and data attributes. We first unified the different data 
layouts in this class of visualization algorithms, choosing the GBC 

plot as the standard formulation. We then proposed three algorithms 
– distance spaced layout, iterative error reduction and force directed 
adjustment – to reduce the error. We also developed an interface by 
which users can explore the error with interactions.  

In this current work we have focused on contextual layouts in 
which the attributes (variables) are arranged at the periphery of the 
data points. While separating the variables and data points makes 
for a structured display, better optimizations might be achievable by 
allowing the attribute points to mingle with the data points. This is 
subject of current research efforts.  
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Fig. 12 Data-centric refinement with the bike data matrix. (a) DIFGBC 
plot and (b) the new layout using just the points inside the green box. 
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Fig. 13 The variable-centric refinement with the bike data matrix.  
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ABSTRACT

Contextual layouts preserve the context of the data with the associated attributes (variables). However, their linear mapping causes errors in the layout – similar data points and variable nodes may not map to similar regions, and vice versa. In this paper, we first unify the various data layout schemes and choose the Generalized Barycentric Coordinates (GBC) plot as the standard way to describe them. Second, we propose three algorithms – distance spaced layout, iterative error reduction, and force directed adjustment – to reduce the layout error of variables to variables, data to variables and data to data, respectively. We find that the combination of these three algorithms can yield large improvements in the layout error and so achieve a more comprehensive layout. Third, we describe an interface, the GBC Error Explorer, which allows users to explore the error using a variety of visualization schemes combined with some interactions. 

Keywords: Visual analytics, generalized barycentric coordinates, multivariate data, contextual layout.
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Introduction

Numerous methods have been described for the data matrix visualization. Methods that solely support the identification of clusters and their outliers, such as multidimensional scaling (MDS) [11] or t-SNE [8] are typically oblivious to the attributes of data. But there are settings in which it can be of interest to see the data points in relation to their attributes. For example, an investor might want to see companies in context of the value metrics of their stocks, such as earnings per share, price to earnings ratio, etc. This investor would pick those stocks that best fit his strategies. Such operations are not supported by MDS or t-SNE. 

Visualization can be a good medium to first assess the overall data, here the stock market, and then focus on the market segment of interest – a class of stocks with the certain desirable constellation of metrics. There are multiple ways to achieve this. In the method of parallel coordinates [6], the attributes define the vertical axes and the data points form piecewise linear lines going across these axes, called polylines. The investor would then filter the stocks along his or her most salient metrics and so isolate the most desirable stocks. 



     Another method lays out the data points in the context of the attributes, and we shall refer to them as contextual data layouts. In these methods, the attributes form special nodes on the data canvas where data points that are ‘stronger’ in certain attributes also come to rest more closely to these attributes (although there can be significant errors – see below). Examples of these types of visualizations are RadViz [14], Star Coordinates [10], and Gravi++ [15]. In this case, the investor would focus on the attribute nodes of greater interest and look at the data points in their neighborhoods. The investor would also be able to assess and recognize conflicts in his set of criteria. There might be no stocks that can fulfill two competing criteria and so he or she would have to make certain trade-offs. Email:{shecheng, mueller}@cs.stonybrook.edu



While the contextual layouts are convenient in that they do not require much filtering, they require other types of interaction, mostly to reduce the errors that result from the attracter/deflector spring-like layout schemes. Often data points that are not related at all come to rest very closely to one another, and moving the attribute points in an interactive fashion can reduce, but not completely eliminate this error, at least not in general.    

Our work focuses on contextual layout displays and the errors they commit. We find they are all special forms of the GBC plot [12][13] - the attributes constitute the vertices of a D-sided polygon (where D is the number of attributes) and the data points are placed in its interior. However, even the GBC plot does not preserve accurate relations between the data and the attribute points, and to address this problem we describe a set of practical algorithms which automatically adjust the locations of both data and attribute points such that these relations are better preserved. Finally, we provide an interface that allows users to explore the various layout errors using different visualization schemes augmented with interactions.

Our paper is structured as follows. Section 2 presents related work. Section 3 provides theoretical aspects. Sections 4 and 5 describe the GBC plots and our various layout improvements. Section 6 presents an evaluation. Section 7 describes our diagnostic interface for parameter tuning. Section 8 ends with conclusions.

Related Work

The visualization of high-dimensional datasets essentially follows three major paradigms – parallel coordinates, scatterplots, and 2D space embeddings. Since the visualization of high-dimensional data on a 2D canvas is inherently an ill-posed problem, there is no method without drawbacks. Parallel coordinates, and its radial version, the star plot [2], have the least ambiguity in the 2D mapping process and the serialization of the high dimensional space into the parallel axis configuration allows all attributes to be seen at once. However, the overplotting of polylines can become a significant problem once the number of data points grows moderately large. 

Scatterplots suffer less from overplotting, but the projection operation can lead to ambiguities as points located far away in high-dimensional space may project to similar 2D locations. Assembling all possible axis-aligned scatterplots into a scatterplot matrix [4] or supporting the projections by an interactive view manipulation system [12] can help but both require effort to navigate. Similar to the star plot, the method of star coordinates [10] arranges the attribute axes in a radial fashion but instead of constructing polylines it plots the data points as a vector sum of the individual axis coordinates. However the locations of the data points are not unique and so an interactive interface is provided that allows users to manually rotate and scale axes to resolve ambiguities, at least partially. 

Many of the ambiguity problems can be overcome by embedding the high-dimensional space onto a 2D canvas via an optimization strategy (MDS, t-SNE, etc.) which seeks to preserve the high dimensional distances – or the statistics – of all point-pairs in the 2D layout. In this way the viewer can easily appreciate neighborhood relations and obtain a good overview of the space quickly. However, as mentioned, this method also has shortcomings – the mapped data points no longer maintain any context with the attributes as this information is typically not preserved in the non-linear mapping. We also use optimization for the 2D layout but retain this context. 

Our method generalizes systems that arrange the nodes representing the attributes along a convex shape and lay out the data points in the interior of this shape. RadViz [3] uniformly spaces the attributes as dimensional anchors along the circumference of a circle. The location of the data points is then determined by a weighting formula where data point attributes with higher values receive a higher weight and so increase the attraction of the point to the corresponding anchor points. However, similar to star coordinates, this can lead to location ambiguities which can be reduced by re-ordering the anchor points manually or algorithmically. Gravi++ [14] uses a different weighting formula but also spaces the attributes at uniform distances onto an encompassing circle. In GBC[13] the enclosing primitive is a general convex polygon for the visualization [12]. Finally, even more general is the Dust & Magnet system [16] which allows one to move and adjust the weights of the attributes. None of these methods can guarantee nearby data and variables points are actually neighbors in high-dimensional space.

Theoretical Considerations

Let be the data matrix with  rows and  columns,



where the rows denote the data points, the columns denote the attributes and  is the data value in the th row and th column. Without loss of generality, we assume  is normalized to [0, 1].

Let D be the data points (we shall simply refer to them as data):

[bookmark: OLE_LINK21][bookmark: OLE_LINK22]             

Let  be the data attributes (we shall refer to them as variables). 



where T is the transpose function.

The methods we discussed above map data and variables into 2D layout space. We denote  and  as their locations respectively.

The Space of Contextual Layout Methods

Table 1. The features of different layout methods

		Method

		VF()

		MF ()



		Radviz

		

		



		Star Coordinates

		

Or other

		



		Gravi++

		

Or other free layout

		



		Dust & Magnet

		

Or other free layout

		



		GBC

		

Or other convex polygon

		



		Remarks

		.  stands for the strength multiplicator of .   is the attraction between dust i and magnet j.   is the circle radius.





[bookmark: OLE_LINK35][bookmark: OLE_LINK36][bookmark: OLE_LINK37][bookmark: OLE_LINK38]We argued Radviz, Star Coordinates, Dust & Magnet, and Gravi++ are similar - they all arrange the variables as vertices in the outward periphery of the data points, providing context. To unify them into a common framework, we need a unified notation. We consider two factors: (1) the layout method for the variables vertices, , and (2) the data mapping function, shown for all methods in Table 1.

For VF, a circular layout is most common, so for this paper, we only consider this type of arrangement for the variables. The  function, on the other hand, uses slightly different forms of weights to compute the variable node locations. The mapping concept is

identical – all apply a linear function – just some methods perform normalization and others do not. 

 While the GBC as described in [12] is more flexible in that it supports generalized polygons, we use it as the standard configuration – a polygon embedded into a circle – to describe the other layout algorithms. The GBC plot on an equilateral polygon is essentially Radviz. We begin with this plot and generalize to others.

The Generalized Barycentric Coordinates (GBC) Plot

The GBC plot is derived from GBC interpolation [12] which extends the method of barycentric interpolation from triangles to multi-vertex convex polygons. The task is to interpolate the value of an interior point P from the values stored at the polygon vertices vi. Referring to Fig. 2, the interpolation weight wi of vi for P is:[bookmark: _Ref399427329] Fig. 2 The GBC Plot.

 



                                                                    

The interpolated value Pv at P is:

 where  and 

The GBC plot uses GBC interpolation in reverse fashion. It seeks to compute the position of P in a convex polygon in which each vertex is assigned to one of the attributes. This replaces Pv by the 2D vector P, and the vi by the 2D coordinates of the attribute vertices. We then set the weights to be the values of the n-dimensional vector, normalize them to compute the , and finally use the 2D coordinates of the attribute vertices to interpolate the 2D coordinate of P. 

The Distance Matrix

The GBC plot can show the distances of data to data, data to variable and variable to variable. The combination of distance matrices 

where ,  and  store the pairwise distance of data points, data points to variables and variables respectively. 

[bookmark: OLE_LINK44][bookmark: OLE_LINK45][bookmark: OLE_LINK46][bookmark: OLE_LINK47][bookmark: OLE_LINK48][bookmark: OLE_LINK49][bookmark: OLE_LINK50][bookmark: OLE_LINK51][bookmark: OLE_LINK52]As mentioned, there are various measures which are suitable to express distance. We would like to choose the Euclidean Distance for DD. For DV, it is good to use the value at this dimension. However, we should use 1-vaule since distance and value have opposite meaning. For VV, we would like to pick 1- correlation. Let  be the set of Distance Metrics, then 

      (1)

GBC Layout Error

[bookmark: OLE_LINK41][bookmark: OLE_LINK42][bookmark: OLE_LINK43]The GBC plot can show the distances of data to data, data to variable and variable to variable, thus the error also combines these three types. We denote  as the error, where ,  and  represent the error of data to data, data to variable and variable to variable respectively;  is the overall error of the GBC mapping. For more details about the definition, see Section 6. In addition, there is also the error resulting from the GBC layout itself. We will discuss how to deal with this kind of error in Section 7.

Our GBC Extensions for More Accurate Layouts

[bookmark: OLE_LINK55][bookmark: OLE_LINK56][bookmark: OLE_LINK57][bookmark: OLE_LINK58][bookmark: OLE_LINK59][bookmark: OLE_LINK53][bookmark: OLE_LINK54]As discussed, the GBC plot has errors –,  and . To reduce the error, we first analyse and reduce each type of error separately, and then combine these effects together to reduce.

Test Datasets

We chose the following data sets to demonstrate our algorithms:

1. Cars dataset – 392 cars with 7 attributes.

2. Sales campaign dataset – 600 data items with 10 attributes.

3. Bike dataset –17,389 instances with 16 attributes.

The GBC layouts for these datasets are shown in Fig. 9 (a).  

[bookmark: OLE_LINK8][bookmark: OLE_LINK9][bookmark: OLE_LINK10]Distance Spaced GBC Plot Layout (DGBC)[bookmark: _Ref399427521]Fig. 3 Distance Spaced Layout Pipeline 



We begin with the . The variables are arranged around the circle – this type of layout maps the data from high dimension to one dimension. One way to achieve this is by projecting the distance matrix into 1D using MDS. However, we cannot guarantee this method provides a good ordering since MDS becomes increasingly error-prone as the distance matrix increases.  Input: The distance matrix (VV)

Output: The variables locations v

 1:  V=TSP(VV) //Reorder the variables. is the circle

 2:  sumVV= // layout neighbour of .

 3:                           

 4:  for  

 5:       

 6:  endfor

 7:  for   // Lay out the variables around the circle.

 8:            

 9:        

10: endfor



Algorithm. 1 Distance Based Layout.





[bookmark: _Ref399399306]Another and more direct way to obtain a linear ordering of the vertices on the polygonal hull is by arranging the vertices through an approximate Traveling Salesman Problem (TSP) solver that operates on the matrix of pairwise correlation distances among the variables. It would choose the minimum length edge as the start edge and keep adding the nearest variables to the endpoints. TSP has been successfully employed to determine a good axis ordering for parallel coordinates [18]. The application for the current case is similar – it also uses the similarity of variables to provide an ordering, but now we also space them apart according to the similarity.  

We place all attribute vertices on a circle, ordered by the distance-based TSP solver and spaced apart by the pairwise distances. The process is illustrated in Fig. 3 and the algorithm is given in Algorithm 1. Fig. 9 (second column) shows the outcome of this experiment for the three datasets we tested. We observe a much improved class separation for all of them. We also observe, from Table 2, that the error of variable to variable is reduced.



[bookmark: OLE_LINK11][bookmark: OLE_LINK15][bookmark: OLE_LINK16]Iterative GBC Plot Error Reduction (IGBC)

[bookmark: OLE_LINK60][bookmark: OLE_LINK61][bookmark: OLE_LINK62][bookmark: OLE_LINK63][bookmark: OLE_LINK65][bookmark: OLE_LINK66]Next we aim to reduce . In the GBC plot, a data point’s value can be gauged by its location – if it is located close to a given variable point then it has a high value in the corresponding attribute, and vice versa. Hence, each variable point has a set of iso-contours where a data point’s value is constant. In this paper, we restrict our study to linear contours, but an extension to non-linear contours would follow similar error-reduction principles. 

Our method seeks to reconstruct an error polygon for each data point and iteratively reduces the size of this polygon. Fig. 4 provides an illustration and Algorithm 2 lists the pseudo code. 

[bookmark: _Ref399427615]Fig. 4 The error polygon 



[bookmark: OLE_LINK39][bookmark: OLE_LINK40]The first assumption our algorithm makes is the existence of a set of distance contours that encode the importance of a variable to a given data point. Suppose we have the variables vertices  and a test data item () with its mapping location as P.  Fig. 4 examines the distance contours for . Assuming the data item has been normalized to a unit vector, the maximum importance a variable can have is 1.0. This would mean in the case examined that =1.0 and so P would coincide with  in the plot. In contrast, if =0.0 which is the minimum importance, then with the current vertex ordering P would need to fall on the edge ,  or . Any other value would lead to a placement of P onto some contour in between. Fig. 4 shows the contour  for =0.6. It is constructed by connecting v4 with all vertices vi and marking the points  where . Connecting these points yields the contour. 

[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK7]Next we find  on the error polygon (marked as ) by intersecting the contour with the line that connects  with P. Performing this procedure for all variables yields all vertices of the error polygon (marked as polygon ). The iterative step concludes by moving P into the center of the error polygon, marked as P’, and then a new iteration begins.

In practice, we iterate about 20 times which completes in a couple of seconds and so does not cause a significant performance drop. The result of this algorithm is shown in Fig. 9 (third column). We observe the IGBC scheme also brings improvements in terms of cluster separation, but not as strong as DGBC.

The change of error is shown in Fig. 5. We observe that  converges for all three test data sets. But we also see here (and in Table 2) this optimization scheme yields large improvements only for the car and bike data but not for the sales campaign data. This is because the campaign data is already well distributed (see Fig. 1). 

Force Directed GBC Plot Adjustment (FGBC)

What remains is the . We can adjust the locations of the data points via traditional MDS to reduce this error. A popular MDS [bookmark: OLE_LINK64]Input: DV, P, v, error threshold, maximum iterations .

Output: the data points locations.

[bookmark: OLE_LINK76][bookmark: OLE_LINK77][bookmark: OLE_LINK78]  1:   while  < threshold || > max-threshold

  2:      for each data point P

  3:             for each variable vertex vj  

  4:                 Compute distance contour.

  5:                 Compute error polygon vertex .

  6:             endfor

  7:       Construct error polygon EP formed by all  .

  8:       Move P to the center of EP.

  9:      endfor

10:    Compute  and iterations .

11:  endwhile



Algorithm. 2. Iterative Error Reduction.



    Algorithm. 3.  Force Directed Adjustment

 

Input: DD, P, v, error threshold, maximum iterations.

Output: the data points locations.

1:   if < threshold || > max-threshold, return. 

2:       for each data point Di

3:            Compute the forces  according to the error. 

4:            Compute the resultant force .

5:            Compute the acceleration by the force.

6:            Move this data point for some period.

7:      endfor

8:    Compute the error  and iterations .

9:  endif





[bookmark: _Ref399429044]Fig. 5  The change of the data to variable error. 

[bookmark: _Ref399429870]Fig. 6 The change of the data to data error.    



scheme is force directed layout [7][5][18]. It iteratively displaces data points until all pair-wise distances in the layout match those in high-dimensional space with minimal error.

In our particular implementation, we construct a network where the vertices correspond to the data points and the edges are springs. (see Fig. 7). Suppose A, B, C, D, E are the fixed data points and P is the point whose location we plan to adjust. P has two types of distances to these five points: (1) the high-dimensional space distances and (2) the 2D layout distances. Their difference forms the error and we should move P in a direction that reduces this error the most. The algorithm sets the difference as a force – either drag or push – in each vertex direction. We use , , ,  and  to denote the force vectors from each vertex and they together form an aggregate force as  to move P.  The algorithm is given in Algorithm 3. 

[bookmark: OLE_LINK79][bookmark: OLE_LINK80]The results of this algorithm for our data sets are shown in Fig. 9, fourth column, and the change is listed in Fig. 6. We observe  converges. Table 2 reveals this scheme yields large improvements in  for the car and the campaign data but not for the bike data. 

[bookmark: _Ref408672471]Fig. 7 The force directed adjustment  



[bookmark: _Ref399317311]Comprehensive Layout (DIFGBC)

The previous sections described the three algorithms {D, I, F} GBC  to reduce three types of error. Now, to reduce the overall error, we need to combine them into a single algorithm. The problem is to determine the order of the three algorithms since they can affect each other. In practice we fix the variables first (with DGBC) since this provides a mapping that is more accurate than the one obtained when the mapping error is reduced first. After running DGBC, we have a choice between first moving the data points with respect to the variable (IGBC) and then adjusting the data points with respect to each other (FGBC), or vice versa. There is no clear intuition which order would be better, but for all datasets we tried, the former order gave better results.  We therefore use this order – DGBC, IGBC and FGBC – refer as DIFGBC. The final column of Fig. 9 shows the outcome. We observe the layout has inherited improvements from three schemes, but the effects of DGBC are strongest.  [bookmark: _Ref399430119]Fig. 8 The error development over the course of the correction. 













Finally, the change of the error is shown in Fig. 8 and Table 2. We can see when DGBC runs, the  reduces sharply; then IGBC yields a large improvement of ; finally, FGBC reduces the . We can also observe when IGBC and FGBC are running, they will somewhat increase the  and  respectively. There exists a trade-off – we usually pay more attention to the  – run the IGBC first, and then FGBC later for small adjustments. The order of the three adjustments can be altered if user has different priorities.

The  has higher error than  and  since GBC maps the variables to 1D but the other two maps to 2D. But  and  are also important – they can preserve the accurate data distribution etc.

[bookmark: _Ref399231079]Evaluation

To gauge the quality of a layout, we use the normalized stress metric between , the matrix of low-dimensional distances , and , the matrix of high-dimensional distances :

                                                                 (2)

[bookmark: OLE_LINK29][bookmark: OLE_LINK30]We use this stress metric to gauge,  and . Each, however, uses a different distance metric for C, set by F in equation (1).

Data to Data Error

The  is due to the difference between L and C. For L and C, we both use Euclidian distance. Now suppose  is the Euclidean distance. We compute the normalized form of each distance as

     

Data to Variable Error

The GBC plot uses F = (1 - Value) for C – a Cij is the jth dimension value of the ith data as . An Euclidian (type) distance for L. However, since the location of the data point is defined by the contour – it uses  to represent , we need to use a scale ratio  for  in the variable 



[bookmark: _Ref399427548]Fig. 9 The GBC error reduction with car data (first line), campaign data (second line) and bike data (third line). The color shows the k-means clusters [9] in the high dimensional distances. The columns are GBC, DGBC, IGBC, FGBC, DIFGBC in order.
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(3, b)

(2, c)

(3, c)

(2, d)
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                                    (3)

Then the real distance and mapped distance can be obtained as

      

[bookmark: _Ref397956851]Variable to Variable Error

This error uses F = 1 - Correlation for C. For L, since the GBC places the variables around the circle, we can use the arc length to measure the distance between two variables. The sum of distances of neighboring variables around the circle is its perimeter: 

                                 (4)

where  is the neighbor point in the counterclockwise of . However, in the variable to variable distance, we cannot guarantee the sum of the neighbor variables distances satisfies condition (4), so we define a scale ratio :

                                                         (5)

Then the real and mapping distance can be obtained as:

          (arc length)                                                                          [bookmark: _Ref399446035]Fig. 10  The error distribution with (a) the car data (b) the campaign data (c) the bike data. Brighter red tones correspond to high value.

(a)

(b)

(c)



[bookmark: _Ref399318114]Overall Error

[bookmark: _Ref399588694]As suggested in Section 5.5, users may have different priorities in the types of distances. Apart from algorithm ordering, we can also express these by giving different weights to the three distances. The overall error is then defined as follows:         

                              (6)

[bookmark: _Ref399441536]As was also suggested in Section 5.5, these priorities are likely , then  followed by  and so we set . 

[bookmark: _Ref399517381]The Error Distribution Display

To give the user an overview of the error distribution, we provide a visualization of it (see Fig. 10). We color each data and variable point as a function of its overall error. In this way the features of the error distribution can be easily identified. From Fig. 10, we can see the data points close to the center of the GBC plot have a high error. 

      Table 2. The error reduction table

Error

Layout

Car

Campaign

Bike



GBC

0.65

2.14

2.91



DGBC

0.34

0.33

1.62



Reduce

49%

85%

44%



GBC

0.39

0.44

0.49



IGBC

0.29

0.43

0.35



Reduce

25%

2%

29%



GBC

0.29

0.4

0.45



FGBC

0.23

0.25

0.43



Reduce

28%

62%

5%



GBC

0.53

1.41

1.87



DIFGBC

0.3

0.31

1.09



Reduce

44%

78%

41%





The GBC Error Explorer

As mentioned before, these types of layouts all suffer from a common problem – the data overlap error (different points have the same position). This kind of error, to the best of our knowledge, is hard to reduce. Springview [1] allows for simultaneously viewing both RadViz and parallel coordinates for view optimization and clutter reduction. We extend this idea and allow users to discover the error by combining different visualization methods into a diagnostic parameter tuning interface – GBC Error Explorer (Fig. 1).

[bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK14]Our GBC Error Explorer provides an interactive visual analytics interface to provide the insight. Its interface features the following components: parallel coordinate display, distance heatmap, layout display, error Vis panel and configuration control panel.

[bookmark: OLE_LINK25][bookmark: OLE_LINK26]The parallel coordinates display provides an overview of the data to help users understand the data values. The distance heat map visualizes the distance matrix. The layout display is the main part of our system – it shows the layout of the distance matrix. The error Vis panel visualizes the error of the layout. Finally, the configuration control panel allows users to manipulate the various parameters.  

The Configuration Control Panel

This control panel contains five major groups: parameter configuration, layout mode, layout color mode, error visualization panel color mode and PC line mode.  

The parameter configuration group allows users to set the distance metric for each distance sub-matrix: Euclidean (E), correlation (C), value (V). The layout mode group enables users to choose the layout strategy. The layout color mode error color mode define the color for layout and error respectively. Finally, the PC line mode enables users to pick the line mode of the parallel coordinates. 

The Heat Map Displays

The Distance Heatmap

The heatmap displays on the left visualizes the distance matrix colored using the color bar. We provide the distance matrices DD, DV and VV. However, to lay them as a unit block and maintain the symmetry, we like to add one more sub-matrix VD to store the distance of variables to data - same as DV (Fig. 1). We find the data are tightly distributed into 3 groups since we find the three blocks.

The Error Vis Panel

[bookmark: OLE_LINK67][bookmark: OLE_LINK68][bookmark: OLE_LINK69]The heat map on the right is the error Vis panel. Since the data matrix usually has less variables than data, it is important to know the variables error. Thus, our error Vis panel shows the  and  vertically with the average ( and ) on the right border. See Fig. 1. We find the data has higher error with the variable “PROI”.

The Parallel Coordinate Display 

The parallel coordinate display shows the data to their dimensions. We have different line modes - straight lines can give users a direct way to see the data, while curve lines are better for the clutter [17]. 

Interactions

Our interface provides several types of interactions that manipulate the layout display. Some of these interactions allow users to appreciate the layout errors directly in the display. Others allow filtering operations such as zooming. Considering the different feathers of the data, we apply different techniques to them.

 Verification coloring

Distance Color  

Fig.  11 a shows our system’s capability to visualize the true high-dimensional distances with respect to a user-selected variable (green box) by intensity-shading all points in terms of that distance. An irregular or adverse shading pattern would point to problems, which is not the case for the chosen example. We can clearly see the car has three types of “origin”- from the different color levels.

Error Color  

Likewise,  Fig.  11 b shows the point-wise layout error with respect to the selected variable (green box). Here we see that the points in the center seem to have a larger layout error– similar conclusion we got from Fig. 10 (a). 

[bookmark: _Ref407800946]Fig.  11 Verification coloring of (a) distance and (b) error.
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Linked displays

Our system also supports linked displays. Users can select a subset of the data in one display and see these in other displays. When we look at the campaign data matrix in the GBC layout, we find they distribute well as three clear clusters. But we might want to know the details of them.  See Fig. 1. We can confirm the yellow group points are close to each other with similar error (from heatmaps) and the variances (from parallel coordinates). 

Local layout refinement

[bookmark: OLE_LINK27][bookmark: OLE_LINK28]The layout can often improve locally if one restricts it to just this region and corresponding high-dimensional subspace. We support two types of local refinements – data-centric and variable-centric.

[bookmark: OLE_LINK31]Data-centric refinement

In the data-centric refinement, the user draws a box in the layout display – such as the green box in Fig. 12a – and then only these data points are included into a focused layout. We saw in Fig. 9c the bike dataset had data points near the center with large error. We select this region and lay out only the points inside it. See Fig. 13b. Now these clusters are much clearer and more defined. 

[bookmark: OLE_LINK32][bookmark: OLE_LINK33]Variable-centric refinement[bookmark: _Ref399447096]Fig. 12 Data-centric refinement with the bike data matrix. (a) DIFGBC plot and (b) the new layout using just the points inside the green box.





 

(a)
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[bookmark: OLE_LINK34]Conversely, users also draw a box (see the blue one) into the layout display but now only the variables inside this box. This is essentially a subspace selection (see Fig. 12 b).  Suppose we wish to know if the bikers are affected by the temperature easily. So we choose a subspace with the related variables, such as temperature, count etc. See Fig. 13. We find the variables form three groups representing the temperature, the number of bike and casual factors respectively.

[bookmark: _Ref408672720]Fig. 13 The variable-centric refinement with the bike data matrix. 
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Conclusion

We have presented a framework that can improve the fidelity of contextual data layouts, in order to better convey the relations of data items and data attributes. We first unified the different data layouts in this class of visualization algorithms, choosing the GBC plot as the standard formulation. We then proposed three algorithms – distance spaced layout, iterative error reduction and force directed adjustment – to reduce the error. We also developed an interface by which users can explore the error with interactions. 

In this current work we have focused on contextual layouts in which the attributes (variables) are arranged at the periphery of the data points. While separating the variables and data points makes for a structured display, better optimizations might be achievable by allowing the attribute points to mingle with the data points. This is subject of current research efforts. 
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