
Fig. 1 The interface of our system demonstrating the linked display functionality – the highlighted parts are linked with the chosen area.

Improving the Fidelity of Contextual Data Layouts Using a
Generalized Barycentric Coordinates Framework

Shenghui Cheng and Klaus Mueller
Visual Analytics and Imaging Lab, Computer Science Department, Stony Brook University and SUNY Korea

ABSTRACT
Contextual layouts preserve the context of the data with the associ-
ated attributes (variables). However, their linear mapping causes
errors in the layout – similar data points and variable nodes may not
map to similar regions, and vice versa. In this paper, we first unify
the various data layout schemes and choose the Generalized Bary-
centric Coordinates (GBC) plot as the standard way to describe
them. Second, we propose three algorithms – distance spaced lay-
out, iterative error reduction, and force directed adjustment – to
reduce the layout error of variables to variables, data to variables
and data to data, respectively. We find that the combination of these
three algorithms can yield large improvements in the layout error
and so achieve a more comprehensive layout. Third, we describe an
interface, the GBC Error Explorer, which allows users to explore
the error using a variety of visualization schemes combined with
some interactions.
Keywords: Visual analytics, generalized barycentric coordinates,
multivariate data, contextual layout.
Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces - Graphical user interfaces (GUI), I.3.6 [Computer
Graphics]: Methodology and Techniques - Interaction Techniques

1 INTRODUCTION
Numerous methods have been described for the data matrix visuali-
zation. Methods that solely support the identification of clusters and
their outliers, such as multidimensional scaling (MDS) [11] or t-
SNE [8] are typically oblivious to the attributes of data. But there
are settings in which it can be of interest to see the data points in
relation to their attributes. For example, an investor might want to
see companies in context of the value metrics of their stocks, such
as earnings per share, price to earnings ratio, etc. This investor
would pick those stocks that best fit his strategies. Such operations
are not supported by MDS or t-SNE.

Visualization can be a good medium to first assess the overall da-
ta, here the stock market, and then focus on the market segment of
interest – a class of stocks with the certain desirable constellation of
metrics. There are multiple ways to achieve this. In the method of
parallel coordinates [6], the attributes define the vertical axes and
the data points form piecewise linear lines going across these axes,
called polylines. The investor would then filter the stocks along his
or her most salient metrics and so isolate the most desirable stocks.
 Another method lays out the data points in the context of the
attributes, and we shall refer to them as contextual data layouts. In
these methods, the attributes form special nodes on the data canvas
where data points that are ‘stronger’ in certain attributes also come
to rest more closely to these attributes (although there can be signif-
icant errors – see below). Examples of these types of visualizations
are RadViz [14], Star Coordinates [10], and Gravi++ [15]. In this
case, the investor would focus on the attribute nodes of greater
interest and look at the data points in their neighborhoods. The
investor would also be able to assess and recognize conflicts in his
set of criteria. There might be no stocks that can fulfill two compet-
ing criteria and so he or she would have to make certain trade-offs.

Email:{shecheng, mueller}@cs.stonybrook.edu

While the contextual layouts are convenient in that they do not
require much filtering, they require other types of interaction, most-
ly to reduce the errors that result from the attracter/deflector spring-
like layout schemes. Often data points that are not related at all
come to rest very closely to one another, and moving the attribute
points in an interactive fashion can reduce, but not completely elim-
inate this error, at least not in general.

Our work focuses on contextual layout displays and the errors
they commit. We find they are all special forms of the GBC plot
[12][13] - the attributes constitute the vertices of a D-sided polygon
(where D is the number of attributes) and the data points are placed
in its interior. However, even the GBC plot does not preserve accu-
rate relations between the data and the attribute points, and to ad-
dress this problem we describe a set of practical algorithms which
automatically adjust the locations of both data and attribute points
such that these relations are better preserved. Finally, we provide an
interface that allows users to explore the various layout errors using
different visualization schemes augmented with interactions.

Our paper is structured as follows. Section 2 presents related
work. Section 3 provides theoretical aspects. Sections 4 and 5 de-
scribe the GBC plots and our various layout improvements. Section
6 presents an evaluation. Section 7 describes our diagnostic inter-
face for parameter tuning. Section 8 ends with conclusions.

2 RELATED WORK
The visualization of high-dimensional datasets essentially follows
three major paradigms – parallel coordinates, scatterplots, and 2D
space embeddings. Since the visualization of high-dimensional data
on a 2D canvas is inherently an ill-posed problem, there is no meth-
od without drawbacks. Parallel coordinates, and its radial version,
the star plot [2], have the least ambiguity in the 2D mapping pro-
cess and the serialization of the high dimensional space into the
parallel axis configuration allows all attributes to be seen at once.
However, the overplotting of polylines can become a significant
problem once the number of data points grows moderately large.

Scatterplots suffer less from overplotting, but the projection op-
eration can lead to ambiguities as points located far away in high-
dimensional space may project to similar 2D locations. Assembling
all possible axis-aligned scatterplots into a scatterplot matrix [4] or
supporting the projections by an interactive view manipulation
system [12] can help but both require effort to navigate. Similar to
the star plot, the method of star coordinates [10] arranges the attrib-
ute axes in a radial fashion but instead of constructing polylines it
plots the data points as a vector sum of the individual axis coordi-
nates. However the locations of the data points are not unique and
so an interactive interface is provided that allows users to manually
rotate and scale axes to resolve ambiguities, at least partially.

Many of the ambiguity problems can be overcome by embedding
the high-dimensional space onto a 2D canvas via an optimization
strategy (MDS, t-SNE, etc.) which seeks to preserve the high di-
mensional distances – or the statistics – of all point-pairs in the 2D
layout. In this way the viewer can easily appreciate neighborhood
relations and obtain a good overview of the space quickly. However,
as mentioned, this method also has shortcomings – the mapped data
points no longer maintain any context with the attributes as this
information is typically not preserved in the non-linear mapping.
We also use optimization for the 2D layout but retain this context.

Our method generalizes systems that arrange the nodes represent-
ing the attributes along a convex shape and lay out the data points
in the interior of this shape. RadViz [3] uniformly spaces the attrib-
utes as dimensional anchors along the circumference of a circle.
The location of the data points is then determined by a weighting
formula where data point attributes with higher values receive a
higher weight and so increase the attraction of the point to the cor-

responding anchor points. However, similar to star coordinates, this
can lead to location ambiguities which can be reduced by re-
ordering the anchor points manually or algorithmically. Gravi++
[14] uses a different weighting formula but also spaces the attrib-
utes at uniform distances onto an encompassing circle. In GBC[13]
the enclosing primitive is a general convex polygon for the visuali-
zation [12]. Finally, even more general is the Dust & Magnet sys-
tem [16] which allows one to move and adjust the weights of the
attributes. None of these methods can guarantee nearby data and
variables points are actually neighbors in high-dimensional space.

3 THEORETICAL CONSIDERATIONS
Let 𝐷𝑀 be the data matrix with 𝑚 rows and 𝑎𝑎 columns,

𝐷𝑀 = �
𝑥11 ⋯ 𝑥1𝑛𝑛
⋮ ⋱ ⋮

𝑥𝑠𝑠1 ⋯ 𝑥𝑠𝑠𝑛𝑛

�

where the rows denote the data points, the columns denote the at-
tributes and 𝑥𝑖𝑖𝑗𝑗 is the data value in the 𝑖𝑖th row and 𝑗th column.
Without loss of generality, we assume 𝐷𝑀 is normalized to [0, 1].
Let D be the data points (we shall simply refer to them as data):

𝐷𝑖𝑖 = [𝑥𝑖𝑖1, 𝑥𝑖𝑖2, … , 𝑥𝑖𝑖𝑛𝑛] (𝑖𝑖 = 1,2, … ,𝑚)

Let 𝑉𝑉 be the data attributes (we shall refer to them as variables).

𝑉𝑉𝑗𝑗 = [𝑥1𝑗𝑗 , 𝑥2𝑗𝑗 , … ,𝑥𝑠𝑠𝑗𝑗]𝑇 (𝑗 = 1,2, … ,𝑎𝑎)

where T is the transpose function.
The methods we discussed above map data and variables into 2D

layout space. We denote 𝐸𝐸 and 𝑣𝑣 as their locations respectively.

3.1 The Space of Contextual Layout Methods
Table 1. The features of different layout methods

Method VF(𝑣𝑣𝑖𝑖) MF (𝐸𝐸𝑖𝑖)

Radviz 𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝑖𝑖

2𝜋𝜋 , 𝑟𝑟 ∙ sin
𝑖𝑖

2𝜋𝜋� �
𝑥𝑖𝑖𝑗𝑗

∑ 𝑥𝑖𝑖𝑘𝑛𝑛
𝑘=1

𝑣𝑣𝑗𝑗
𝑛𝑛

𝑗𝑗=1

Star Co-
ordinates

𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋�

Or other
� 𝑥𝑖𝑖𝑗𝑗𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1

Gravi++ 𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋�

Or other free layout

�
𝑐𝑐𝑗𝑗𝑥𝑖𝑖𝑗𝑗

∑ 𝑐𝑐𝑘𝑥𝑖𝑖𝑘𝑛𝑛
𝑘=1

𝑛𝑛

𝑗𝑗=1
∙ 𝑣𝑣𝑗𝑗

Dust &
Magnet

𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋�

Or other free layout
� 𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑖𝑖𝑗𝑗 ∙ 𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1

GBC 𝑣𝑣𝑖𝑖 = �𝑟𝑟 ∙ cos
𝜃𝑖𝑖
2𝜋𝜋 , 𝑟𝑟 ∙ sin

𝜃𝑖𝑖
2𝜋𝜋�

Or other convex polygon
�

𝑥𝑖𝑖𝑗𝑗
∑ 𝑥𝑖𝑖𝑘𝑛𝑛
𝑘=1

𝑣𝑣𝑗𝑗
𝑛𝑛

𝑗𝑗=1

Remarks
𝜃1 + ∑ (𝜃𝑗𝑗 − 𝜃𝑗𝑗−1)𝑛𝑛

𝑖𝑖=2 = 2𝜋𝜋 . 𝑐𝑐𝑗𝑗 stands for the
strength multiplicator of 𝑣𝑣𝑗𝑗 . 𝑎𝑎𝑖𝑖𝑗𝑗 is the attraction
between dust i and magnet j. 𝑟𝑟 is the circle radius.

We argued Radviz, Star Coordinates, Dust & Magnet, and Gravi++
are similar - they all arrange the variables as vertices in the outward
periphery of the data points, providing context. To unify them into a
common framework, we need a unified notation. We consider two
factors: (1) the layout method for the variables vertices, 𝑉𝑉𝐹𝐹, and (2)
the data mapping function 𝑀𝐹𝐹, shown for all methods in Table 1.

For VF, a circular layout is most common, so for this paper, we
only consider this type of arrangement for the variables. The 𝑀𝐹𝐹
function, on the other hand, uses slightly different forms of weights
to compute the variable node locations. The mapping concept is

 Fig. 2 The GBC Plot.

identical – all apply a linear function – just some methods perform
normalization and others do not.

 While the GBC as described in [12] is more flexible in that it
supports generalized polygons, we use it as the standard configura-
tion – a polygon embedded into a circle – to describe the other lay-
out algorithms. The GBC plot on an equilateral polygon is essen-
tially Radviz. We begin with this plot and generalize to others.

4 THE GENERALIZED BARYCENTRIC COORDINATES (GBC) PLOT
The GBC plot is derived from GBC interpolation [12] which ex-
tends the method of barycentric inter-
polation from triangles to multi-vertex
convex polygons. The task is to inter-
polate the value of an interior point P
from the values stored at the polygon
vertices vi. Referring to Fig. 2, the
interpolation weight wi of vi for P is:

 𝑤𝑖𝑖 = cot(𝛼)+cot (𝛽)
‖𝑃−𝑣𝑖𝑖‖2

The interpolated value Pv at P is:
𝐸𝐸𝑣𝑣 = ∑ 𝑤𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 where 𝑎𝑎𝑖𝑖 = 𝑤𝑖𝑖 ∑ 𝑤𝑘𝑛𝑛
𝑘=1⁄ and ∑ 𝑎𝑎𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1

The GBC plot uses GBC interpolation in reverse fashion. It seeks to
compute the position of P in a convex polygon in which each vertex
is assigned to one of the attributes. This replaces Pv by the 2D vec-
tor P, and the vi by the 2D coordinates of the attribute vertices. We
then set the weights to be the values of the n-dimensional vector,
normalize them to compute the 𝑎𝑎𝑖𝑖, and finally use the 2D coordi-
nates of the attribute vertices to interpolate the 2D coordinate of P.

4.1 The Distance Matrix
The GBC plot can show the distances of data to data, data to varia-
ble and variable to variable. The combination of distance matrices

𝐶 = {𝐷𝐷,𝐷𝑉𝑉,𝑉𝑉𝑉𝑉}
where 𝐷𝐷, 𝐷𝑉𝑉 and 𝑉𝑉𝑉𝑉 store the pairwise distance of data points,
data points to variables and variables respectively.

As mentioned, there are various measures which are suitable to
express distance. We would like to choose the Euclidean Distance
for DD. For DV, it is good to use the value at this dimension. How-
ever, we should use 1-vaule since distance and value have opposite
meaning. For VV, we would like to pick 1- correlation. Let 𝐹𝐹 be the
set of Distance Metrics, then

𝐹𝐹 = {𝐸𝐸𝑢𝑐𝑐𝑎𝑎𝑖𝑖𝑑𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝑖𝑖𝑐𝑐𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 |1− 𝑣𝑣𝑎𝑎𝑢𝑎𝑎𝑎𝑎 |1− 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑖𝑖𝑐𝑐𝑎𝑎} (1)

4.2 GBC Layout Error
The GBC plot can show the distances of data to data, data to varia-
ble and variable to variable, thus the error also combines these three
types. We denote 𝐸𝐸 as the error, where 𝐸𝐸𝐷𝐷𝐷𝐷, 𝐸𝐸𝐷𝐷𝑉𝑉 and 𝐸𝐸𝑉𝑉𝑉𝑉 represent
the error of data to data, data to variable and variable to variable
respectively; 𝐸𝐸𝐴𝐴 is the overall error of the GBC mapping. For more
details about the definition, see Section 6. In addition, there is also
the error resulting from the GBC layout itself. We will discuss how
to deal with this kind of error in Section 7.

5 OUR GBC EXTENSIONS FOR MORE ACCURATE LAYOUTS
As discussed, the GBC plot has errors –𝐸𝐸𝐷𝐷𝐷𝐷, 𝐸𝐸𝐷𝐷𝑉𝑉 and 𝐸𝐸𝑉𝑉𝑉𝑉. To re-
duce the error, we first analyse and reduce each type of error sepa-
rately, and then combine these effects together to reduce 𝐸𝐸𝐴𝐴.

5.1 Test Datasets
We chose the following data sets to demonstrate our algorithms:

1. Cars dataset – 392 cars with 7 attributes.
2. Sales campaign dataset – 600 data items with 10 attributes.
3. Bike dataset –17,389 instances with 16 attributes.
The GBC layouts for these datasets are shown in Fig. 9 (a).

5.2 Distance Spaced GBC Plot Layout (DGBC)

We begin with the 𝐸𝐸𝑉𝑉𝑉𝑉. The variables are arranged around the circle
– this type of layout maps the data from high dimension to one
dimension. One way to achieve this is by projecting the distance
matrix into 1D using MDS. However, we cannot guarantee this
method provides a good ordering since MDS becomes increasingly
error-prone as the distance matrix increases.

Another and more direct way to obtain a linear ordering of the
vertices on the polygonal hull is by arranging the vertices through
an approximate Traveling Salesman Problem (TSP) solver that
operates on the matrix of pairwise correlation distances among the
variables. It would choose the minimum length edge as the start
edge and keep adding the nearest variables to the endpoints. TSP
has been successfully employed to determine a good axis ordering
for parallel coordinates [18]. The application for the current case is
similar – it also uses the similarity of variables to provide an order-
ing, but now we also space them apart according to the similarity.

We place all attribute vertices on a circle, ordered by the dis-
tance-based TSP solver and spaced apart by the pairwise distances.
The process is illustrated in Fig. 3 and the algorithm is given in
Algorithm 1. Fig. 9 (second column) shows the outcome of this
experiment for the three datasets we tested. We observe a much
improved class separation for all of them. We also observe, from
Table 2, that the error of variable to variable is reduced.

Input: The distance matrix (VV)
Output: The variables locations v
 1: V=TSP(VV) //Reorder the variables. 𝑉𝑉𝒩𝒩(𝑖𝑖) is the circle
 2: sumVV=∑ 𝐹𝐹(𝑉𝑉𝑖𝑖 ,𝑉𝑉𝒩𝒩(𝑖𝑖))𝑛𝑛

𝑖𝑖=1 // layout neighbour of 𝑉𝑉𝑖𝑖 .
 3: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0 = 0
 4: for 𝑖𝑖 = 2:𝑎𝑎
 5: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖−1 + 2𝜋𝜋 𝐹𝐹(𝑉𝑉𝑖𝑖,𝑉𝑉𝒩𝒩(𝑖𝑖))

𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑉𝑉

 6: endfor
 7: for 𝑖𝑖 = 1:𝑎𝑎 // Lay out the variables around the circle.
 8: 𝑣𝑣𝑖𝑖𝑥𝑥 = 𝑟𝑟 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)
 9: 𝑣𝑣𝑖𝑖𝑦𝑦 = 𝑟𝑟 ∙ 𝑐𝑐𝑖𝑖𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)
10: endfor

Algorithm. 1 Distance Based Layout.

Fig. 3 Distance Spaced Layout Pipeline

5.3 Iterative GBC Plot Error Reduction (IGBC)
Next we aim to reduce 𝐸𝐸𝐷𝐷𝑉𝑉. In the GBC plot, a data point’s value
can be gauged by its location – if it is located close to a given vari-
able point then it has a high value in the corresponding attribute,
and vice versa. Hence, each variable point has a set of iso-contours
where a data point’s value is constant. In this paper, we restrict our
study to linear contours, but an extension to non-linear contours
would follow similar error-reduction principles.

Our method seeks to reconstruct an error polygon for each data
point and iteratively reduces the size of this polygon. Fig. 4 pro-
vides an illustration and Algorithm 2 lists the pseudo code.

The first assumption our algorithm makes is the existence of a set

of distance contours that encode the importance of a variable to a
given data point. Suppose we have the variables vertices
𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3,𝑣𝑣4, 𝑣𝑣5 and a test data item (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) with its
mapping location as P. Fig. 4 examines the distance contours for
𝑉𝑉4. Assuming the data item has been normalized to a unit vector,
the maximum importance a variable can have is 1.0. This would
mean in the case examined that 𝑥4=1.0 and so P would coincide
with 𝑣𝑣4 in the plot. In contrast, if 𝑥4=0.0 which is the minimum
importance, then with the current vertex ordering P would need to
fall on the edge 𝑣𝑣5𝑣𝑣1, 𝑣𝑣1𝑣𝑣2 or 𝑣𝑣2𝑣𝑣3. Any other value would lead to
a placement of P onto some contour in between. Fig. 4 shows the
contour 𝑄5𝑄1𝑄2𝑄3������������� for 𝑥4=0.6. It is constructed by connecting v4
with all vertices vi and marking the points 𝑄𝑖𝑖 where (𝑣𝑣4𝑄𝑖𝑖)/
(𝑣𝑣4𝑣𝑣𝑖𝑖) = 1 − 0.6. Connecting these points yields the contour.

Next we find 𝑣𝑣4 on the error polygon (marked as 𝐸𝐸𝐸𝐸4) by inter-
secting the contour with the line that connects 𝑣𝑣4 with P. Perform-
ing this procedure for all variables yields all vertices of the error
polygon (marked as polygon 𝐸𝐸𝐸𝐸1𝐸𝐸𝐸𝐸2𝐸𝐸𝐸𝐸3𝐸𝐸𝐸𝐸4𝐸𝐸𝐸𝐸5������������������������). The iterative
step concludes by moving P into the center of the error polygon,
marked as P’, and then a new iteration begins.

In practice, we iterate about 20 times which completes in a cou-
ple of seconds and so does not cause a significant performance
drop. The result of this algorithm is shown in Fig. 9 (third column).
We observe the IGBC scheme also brings improvements in terms of
cluster separation, but not as strong as DGBC.

The change of error is shown in Fig. 5. We observe that 𝐸𝐸𝐷𝐷𝑉𝑉
converges for all three test data sets. But we also see here (and in
Table 2) this optimization scheme yields large improvements only
for the car and bike data but not for the sales campaign data. This is
because the campaign data is already well distributed (see Fig. 1).

5.4 Force Directed GBC Plot Adjustment (FGBC)
What remains is the 𝐸𝐸𝑉𝑉𝑉𝑉. We can adjust the locations of the data
points via traditional MDS to reduce this error. A popular MDS

Fig. 4 The error polygon

Q5

Q3

Q2

Q1

v5

v4 v3

v2

v1

P

EP4

EP5

EP3

EP2

EP1

P'

Input: DV, P, v, error threshold, maximum iterations .
Output: the data points locations.
 1: while 𝐸𝐸𝐷𝐷𝑉𝑉< threshold || 𝐼𝐼𝐷𝐷𝑉𝑉> max-threshold
 2: for each data point P
 3: for each variable vertex vj
 4: Compute distance contour.
 5: Compute error polygon vertex 𝐸𝐸𝐸𝐸𝑗𝑗 .
 6: endfor
 7: Construct error polygon EP formed by all 𝐸𝐸𝐸𝐸𝑗𝑗 .
 8: Move P to the center of EP.
 9: endfor
10: Compute 𝐸𝐸𝐷𝐷𝑉𝑉 and iterations 𝐼𝐼𝐷𝐷𝑉𝑉 .
11: endwhile

Algorithm. 2. Iterative Error Reduction.

 Algorithm. 3. Force Directed Adjustment
 Input: DD, P, v, error threshold, maximum iterations.

Output: the data points locations.
1: if 𝐸𝐸𝐷𝐷𝐷𝐷< threshold || 𝐼𝐼𝐷𝐷𝐷𝐷> max-threshold, return.
2: for each data point Di
3: Compute the forces 𝑓𝑓𝑗𝑗 according to the error.
4: Compute the resultant force 𝑓𝑓𝑠𝑠 = ∑ 𝑓𝑓𝑗𝑗𝑠𝑠

𝑗𝑗=1 .
5: Compute the acceleration by the force.
6: Move this data point for some period.
7: endfor
8: Compute the error 𝐸𝐸𝐷𝐷𝐷𝐷 and iterations 𝐼𝐼𝐷𝐷𝐷𝐷.
9: endif

Fig. 5 The change of the data to variable error.

Fig. 6 The change of the data to data error.

Fig. 8 The error development over the course of the correction.

𝐸𝐸𝐷𝐷𝐷𝐷
𝐸𝐸𝐷𝐷𝑉𝑉
𝐸𝐸𝑉𝑉𝑉𝑉
𝐸𝐸𝐴𝐴

scheme is force directed layout [7][5][18]. It iteratively displaces
data points until all pair-wise distances in the layout match those in
high-dimensional space with minimal error.

In our particular implementation, we construct a network where
the vertices correspond to the data points and the edges are springs.
(see Fig. 7). Suppose A, B, C, D, E are the fixed data points and P is
the point whose location we plan to adjust. P has two types of dis-
tances to these five points: (1) the high-dimensional space distances
and (2) the 2D layout distances. Their difference forms the error
and we should move P in a direction that reduces this error the most.
The algorithm sets the difference as a force – either drag or push –
in each vertex direction. We use 𝑓𝑓𝐴𝐴, 𝑓𝑓𝐵, 𝑓𝑓𝐶 , 𝑓𝑓𝐷𝐷 and 𝑓𝑓𝐸 to denote the
force vectors from each vertex and they together form an aggregate
force as 𝑓𝑓𝑆 to move P. The algorithm is given in Algorithm 3.

The results of this algorithm for our data sets are shown in Fig. 9,
fourth column, and the change is listed in Fig. 6. We observe 𝐸𝐸𝐷𝐷𝐷𝐷
converges. Table 2 reveals this scheme yields large improvements
in 𝐸𝐸𝐷𝐷𝐷𝐷 for the car and the campaign data but not for the bike data.

5.5 Comprehensive Layout (DIFGBC)
The previous sections described the three algorithms {D, I, F} GBC
to reduce three types of error. Now, to reduce the overall error, we
need to combine them into a single algorithm. The problem is to
determine the order of the three algorithms since they can affect
each other. In practice we fix the variables first (with DGBC) since
this provides a mapping that is more accurate than the one obtained
when the mapping error is reduced first. After running DGBC, we
have a choice between first moving the data points with respect to
the variable (IGBC) and then adjusting the data points with respect
to each other (FGBC), or vice versa. There is no clear intuition

which order would be better, but for all datasets we tried, the for-
mer order gave better results. We therefore use this order – DGBC,
IGBC and FGBC – refer as DIFGBC. The final column of Fig. 9
shows the outcome. We observe the layout has inherited improve-
ments from three schemes, but the effects of DGBC are strongest.

Finally, the change of the error is shown in Fig. 8 and Table 2.
We can see when DGBC runs, the 𝐸𝐸𝑉𝑉𝑉𝑉 reduces sharply; then IGBC
yields a large improvement of 𝐸𝐸𝐷𝐷𝑉𝑉; finally, FGBC reduces the 𝐸𝐸𝐷𝐷𝐷𝐷.
We can also observe when IGBC and FGBC are running, they will
somewhat increase the 𝐸𝐸𝐷𝐷𝐷𝐷 and 𝐸𝐸𝐷𝐷𝑉𝑉 respectively. There exists a
trade-off – we usually pay more attention to the 𝐸𝐸𝐷𝐷𝑉𝑉 – run the
IGBC first, and then FGBC later for small adjustments. The order
of the three adjustments can be altered if user has different priorities.

The 𝐸𝐸𝑉𝑉𝑉𝑉 has higher error than 𝐸𝐸𝐷𝐷𝑉𝑉 and 𝐸𝐸𝐷𝐷𝐷𝐷 since GBC maps the
variables to 1D but the other two maps to 2D. But 𝐸𝐸𝐷𝐷𝐷𝐷 and 𝐸𝐸𝐷𝐷𝑉𝑉 are
also important – they can preserve the accurate data distribution etc.

6 EVALUATION
To gauge the quality of a layout, we use the normalized stress met-
ric between 𝐿, the matrix of low-dimensional distances 𝐿𝑖𝑖𝑗𝑗, and 𝐶,
the matrix of high-dimensional distances 𝐶𝑖𝑖𝑗𝑗:

 𝑐𝑐𝑡𝑟𝑟𝑎𝑎𝑐𝑐𝑐𝑐(𝐿, C) = �
∑ (𝐿𝑖𝑖𝑗−𝐶𝑖𝑖𝑗)2𝑖𝑖𝑗

∑ 𝐶𝑖𝑖𝑗
2

𝑖𝑖𝑗
 (2)

We use this stress metric to gauge 𝐸𝐸𝐷𝐷𝐷𝐷, 𝐸𝐸𝐷𝐷𝑉𝑉 , and 𝐸𝐸𝑉𝑉𝑉𝑉. Each, how-
ever, uses a different distance metric for C, set by F in equation (1).

6.1 Data to Data Error
The 𝐸𝐸𝐷𝐷𝐷𝐷 is due to the difference between L and C. For L and C, we
both use Euclidian distance. Now suppose ‖∙‖ is the Euclidean
distance. We compute the normalized form of each distance as

𝐶𝑖𝑖𝑗𝑗 = 𝐹𝐹�𝐷𝑖𝑖 ,𝐷𝑗𝑗� ∑ 𝐹𝐹(𝐷𝑖𝑖 ,𝐷𝑘)𝑠𝑠
𝑘=1�

𝐿𝑖𝑖𝑗𝑗 = �𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑗𝑗� ∑ ‖𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑘‖𝑠𝑠
𝑘=1�

6.2 Data to Variable Error
The GBC plot uses F = (1 - Value) for C – a Cij is the jth dimension
value of the ith data as 𝐹𝐹(𝐷𝑖𝑖 , 𝑉𝑉𝑗𝑗). An Euclidian (type) distance for L.
However, since the location of the data point is defined by the con-
tour – it uses �𝐸𝐸𝐸𝐸𝑗𝑗 − 𝑣𝑣𝑖𝑖� to represent 𝐹𝐹(𝐷𝑖𝑖 , 𝑉𝑉𝑗𝑗), we need to use a
scale ratio 𝛼𝑖𝑖𝑗𝑗 for 𝐷𝑖𝑖 in the variable 𝑉𝑉𝑗𝑗

Fig. 7 The force directed adjustment

Fig. 10 The error distribution with (a) the car data (b) the campaign data (c) the bike data. Brighter red tones correspond to high value.

(a) (b) (c)

𝛼𝑖𝑖𝑗𝑗 = �𝐸𝐸𝐸𝐸𝑗𝑗 − 𝑣𝑣𝑖𝑖� 𝐹𝐹(𝐷𝑖𝑖 , 𝑉𝑉𝑗𝑗)� (3)

Then the real distance and mapped distance can be obtained as
𝐶𝑖𝑖𝑗𝑗 = 𝛼𝑖𝑖𝑗𝑗𝐹𝐹(𝐷𝑖𝑖 ,𝑉𝑉𝑗𝑗) 𝐿𝑖𝑖𝑗𝑗 = �𝐸𝐸𝑖𝑖 − 𝑣𝑣𝑗𝑗�

6.3 Variable to Variable Error
This error uses F = 1 - Correlation for C. For L, since the GBC
places the variables around the circle, we can use the arc length to
measure the distance between two variables. The sum of distances
of neighboring variables around the circle is its perimeter:

∑ 𝑣𝑣𝑘𝑣𝑣𝒩𝒩(𝑘)�𝑛𝑛
𝑘=1 = 2𝜋𝜋𝑟𝑟 (4)

where 𝑣𝑣𝒩𝒩(𝑘) is the neighbor point in the counterclockwise of 𝑣𝑣𝑘 .
However, in the variable to variable distance, we cannot guarantee
the sum of the neighbor variables distances satisfies condition (4),
so we define a scale ratio 𝛽:

 𝛽 = 2𝜋𝜋𝑟𝑟 ∑ 𝐹𝐹�𝑉𝑉𝑘 ,𝑉𝑉𝒩𝒩(𝑘)�𝑛𝑛
𝑘=1⁄ (5)

Then the real and mapping distance can be obtained as:

𝐶𝑖𝑖𝑗𝑗 = 𝛽𝐹𝐹(𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗) 𝐿𝑖𝑖𝑗𝑗 = �𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗� (arc length)

Fig. 9 The GBC error reduction with car data (first line), campaign data (second line) and bike data (third line). The color shows the k-
means clusters [9] in the high dimensional distances. The columns are GBC, DGBC, IGBC, FGBC, DIFGBC in order.

 GBC DGBC IGBC FGBC DIFGBC

(1, a) (1, b) (1, c) (1, d) (1, e)

(2, a)

(3, a)

(2, b)

(3, b)

(2, c)

(3, c)

(2, d)

(3, d)

(2, e)

(3, e)

car

campaign

bike

6.4 Overall Error
As suggested in Section 5.5, users may have different priorities in
the types of distances. Apart from algorithm ordering, we can also
express these by giving different weights to the three distances. The
overall error is then defined as follows:

 𝐸𝐸𝐴𝐴 = 𝑤𝐷𝐷𝐷𝐷𝐸𝐸𝐷𝐷𝐷𝐷 + 𝑤𝐷𝐷𝑉𝑉𝐸𝐸𝐷𝐷𝑉𝑉 + 𝑤𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉 (6)

As was also suggested in Section 5.5, these priorities are likely 𝐸𝐸𝑉𝑉𝑉𝑉,
then 𝐸𝐸𝐷𝐷𝑉𝑉 followed by 𝐸𝐸𝐷𝐷𝐷𝐷 and so we set 𝑤𝐷𝐷𝐷𝐷:𝑤𝐷𝐷𝑉𝑉:𝑤𝑉𝑉𝑉𝑉 = 2: 4: 8.

6.5 The Error Distribution Display
To give the user an overview of the error distribution, we provide a
visualization of it (see Fig. 10). We color each data and variable
point as a function of its overall error. In this way the features of the
error distribution can be easily identified. From Fig. 10, we can see
the data points close to the center of the GBC plot have a high error.

7 THE GBC ERROR EXPLORER
As mentioned before, these types of layouts all suffer from a com-
mon problem – the data overlap error (different points have the
same position). This kind of error, to the best of our knowledge, is
hard to reduce. Springview [1] allows for simultaneously viewing
both RadViz and parallel coordinates for view optimization and
clutter reduction. We extend this idea and allow users to discover
the error by combining different visualization methods into a diag-
nostic parameter tuning interface – GBC Error Explorer (Fig. 1).

Our GBC Error Explorer provides an interactive visual analytics
interface to provide the insight. Its interface features the following
components: parallel coordinate display, distance heatmap, layout
display, error Vis panel and configuration control panel.

The parallel coordinates display provides an overview of the data
to help users understand the data values. The distance heat map
visualizes the distance matrix. The layout display is the main part of
our system – it shows the layout of the distance matrix. The error
Vis panel visualizes the error of the layout. Finally, the configura-
tion control panel allows users to manipulate the various parameters.

7.1 The Configuration Control Panel
This control panel contains five major groups: parameter configura-
tion, layout mode, layout color mode, error visualization panel col-
or mode and PC line mode.

The parameter configuration group allows users to set the dis-
tance metric for each distance sub-matrix: Euclidean (E), correla-
tion (C), value (V). The layout mode group enables users to choose

the layout strategy. The layout color mode error color mode define
the color for layout and error respectively. Finally, the PC line
mode enables users to pick the line mode of the parallel coordinates.

7.2 The Heat Map Displays
The Distance Heatmap
The heatmap displays on the left visualizes the distance matrix
colored using the color bar. We provide the distance matrices DD,
DV and VV. However, to lay them as a unit block and maintain the
symmetry, we like to add one more sub-matrix VD to store the dis-
tance of variables to data - same as DV (Fig. 1). We find the data
are tightly distributed into 3 groups since we find the three blocks.

The Error Vis Panel
The heat map on the right is the error Vis panel. Since the data ma-
trix usually has less variables than data, it is important to know the
variables error. Thus, our error Vis panel shows the 𝐸𝐸𝐷𝐷𝑉𝑉 and 𝐸𝐸𝑉𝑉𝑉𝑉
vertically with the average (𝐸𝐸𝐷𝐷𝑉𝑉�����̈ and 𝐸𝐸𝑉𝑉𝑉𝑉�����) on the right border. See
Fig. 1. We find the data has higher error with the variable “PROI”.

7.3 The Parallel Coordinate Display
The parallel coordinate display shows the data to their dimensions.
We have different line modes - straight lines can give users a direct
way to see the data, while curve lines are better for the clutter [17].

7.4 Interactions
Our interface provides several types of interactions that manipulate
the layout display. Some of these interactions allow users to appre-
ciate the layout errors directly in the display. Others allow filtering
operations such as zooming. Considering the different feathers of
the data, we apply different techniques to them.

7.4.1 Verification coloring
Distance Color
Fig. 11 a shows our system’s capability to visualize the true high-
dimensional distances with respect to a user-selected variable
(green box) by intensity-shading all points in terms of that distance.
An irregular or adverse shading pattern would point to problems,
which is not the case for the chosen example. We can clearly see
the car has three types of “origin”- from the different color levels.

Error Color
Likewise, Fig. 11 b shows the point-wise layout error with respect
to the selected variable (green box). Here we see that the points in
the center seem to have a larger layout error– similar conclusion we
got from Fig. 10 (a).

7.4.2 Linked displays
Our system also supports linked displays. Users can select a subset
of the data in one display and see these in other displays. When we
look at the campaign data matrix in the GBC layout, we find they

Table 2. The error reduction table

Error Layout Car Campaign Bike

𝐸𝐸𝑉𝑉𝑉𝑉
GBC 0.65 2.14 2.91

DGBC 0.34 0.33 1.62
Reduce 49% 85% 44%

𝐸𝐸𝐷𝐷𝑉𝑉
GBC 0.39 0.44 0.49
IGBC 0.29 0.43 0.35

Reduce 25% 2% 29%

𝐸𝐸𝐷𝐷𝐷𝐷
GBC 0.29 0.4 0.45

FGBC 0.23 0.25 0.43
Reduce 28% 62% 5%

𝐸𝐸𝐴𝐴
GBC 0.53 1.41 1.87

DIFGBC 0.3 0.31 1.09
Reduce 44% 78% 41%

Fig. 11 Verification coloring of (a) distance and (b) error.

(a) (b)

Accel

Origin

MPG

Year
CYL Weight

Hpower

Accel

Origin

MPG

Year
CYL Weight

Hpower

distribute well as three clear clusters. But we might want to know
the details of them. See Fig. 1. We can confirm the yellow group
points are close to each other with similar error (from heatmaps)
and the variances (from parallel coordinates).

7.4.3 Local layout refinement
The layout can often improve locally if one restricts it to just this
region and corresponding high-dimensional subspace. We support
two types of local refinements – data-centric and variable-centric.

Data-centric refinement
In the data-centric refinement, the user draws a box in the layout
display – such as the green box in Fig. 12a – and then only these
data points are included into a focused layout. We saw in Fig. 9c
the bike dataset had data points near the center with large error. We
select this region and lay out only the points inside it. See Fig. 13b.
Now these clusters are much clearer and more defined.

Variable-centric refinement
Conversely, users also draw a box (see the blue one) into the layout
display but now only the variables inside this box. This is essential-
ly a subspace selection (see Fig. 12 b). Suppose we wish to know if
the bikers are affected by the temperature easily. So we choose a
subspace with the related variables, such as temperature, count etc.
See Fig. 13. We find the variables form three groups representing
the temperature, the number of bike and casual factors respectively.

8 CONCLUSION
We have presented a framework that can improve the fidelity of
contextual data layouts, in order to better convey the relations of
data items and data attributes. We first unified the different data
layouts in this class of visualization algorithms, choosing the GBC

plot as the standard formulation. We then proposed three algorithms
– distance spaced layout, iterative error reduction and force directed
adjustment – to reduce the error. We also developed an interface by
which users can explore the error with interactions.

In this current work we have focused on contextual layouts in
which the attributes (variables) are arranged at the periphery of the
data points. While separating the variables and data points makes
for a structured display, better optimizations might be achievable by
allowing the attribute points to mingle with the data points. This is
subject of current research efforts.

ACKNOWLEDGMENTS
This research was partially supported by NSF grant IIS 1117132
and the MSIP, Korea, under the "IT Consilience Creative Program
(ITCCP)" (NIPA-2013-H0203-13-1001) supervised by NIPA. We
thank the reviewers, in particular the primary, for their diligent
comments that greatly improved the presentation of the work.

REFERENCES
[1] E. Bertini, L. Aquila, G. Santucci. “SpringView: Cooperation of Rad-

viz and Parallel Coordinates for View Optimization and Clutter Re-
duction.” Proc. of IEEE International Conference on Coordinated &
Multiple Views in Exploratory Visualization (CMV), 2005.

[2] J. Chambers, W. Cleveland, P. Tukey, Graphical Methods for Data
Analysis, Duxbury Press, 1983.

[3] G. Grinstein, M. Trutschl, U, Cvek, “High-dimensional visualizations,”
Proc. Visual Data Mining Workshop, KDD, 2001.

[4] J. Hartigan, “Printer Graphics for Clustering,” J. Statistical Computa-
tion and Simulation, 4(3): 187-213, 1975.

[5] S. Ingram, T. Munzner, M. Olano, “Glimmer: Multilevel MDS on the
GPU”. IEEE Trans. Vis. Comput. Graph. 15(2): 249-261 (2009)

[6] A. Inselberg, B. Dimsdale, “Parallel Coordinates: A Tool for Visualiz-
ing Multi-Dimensional Geometry,” Proc. IEEE Visualization, pp. 361-
378, 1990.

[7] A.Morrison, G. Ross, M. Chalmers, “Fast multidimensional scaling
through sampling, springs and interpolation.” Information Visualiza-
tion 2(1):68-77 (2003)

[8] L.Maaten, G.Hinton, “Visualizing data using t-SNE”, J. Machine
Learning Research, 9: 2579-2605, 2008

[9] MacQueen, J. B. (1967). "Some Methods for classification and Analy-
sis of Multivariate Observations". Proc. of 5th Berkeley Symposium on
Mathematical Statistics and Probability. University of California
Press. pp. 281–297. MR 0214227. Zbl 0214.46201.

[10] E. Kandogan, “Star Coordinates: A Multi-Dimensional Visualization
Technique with Uniform Treatment of Dimensions,” Proc. IEEE In-
formation Visualization, Late Breaking Topics, pp. 9-12, 2000

[11] J. Kruskal. M. Wish, Multidimensional Scaling. Sage Publications,
1977.

[12] J. Nam, K. Mueller, "TripAdvisorN-D: A Tourism-Inspired High-
Dimensional Space Exploration Framework with Overview and De-
tail," IEEE Trans. Visualization and Computer Graphics, 19(2):291-
305, 2013.

[13] M. Meyer, A. Barr, H. Lee, M. Desbrun, “Generalized Barycentric
Coordinates on Irregular Polygons,” J. Graphics Tools, 7(1), 2002.

[14] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, E. Stanley, "DNA
Visual and Analytic Data Mining", Proc. IEEE Vis, pp. 437-441,
1997.

[15] K. Hinum, S. Miksch, W. Aigner, S. Ohmann, C. Popow, M. Pohl, M.
Rester, “Gravi++: Interactive Information Visualization to Explore
Highly Structured Temporal Data,” J. Universal Computer Science
11(11):1792-1805, 2005.

[16] J. Yi, R. Melton, J. Stasko, J. Jacko, "Dust & Magnet: Multivariate
Information Visualization using a Magnet Metaphor," Information
Visualization, 4(4) : 239-256, 2005.

[17] H.Zhou, X.Yuan, H.Qu, W.Cui, B.Chen: Visual Clustering in Parallel
Coordinates. Comput. Graph. Forum 27(3): 1047-1054 (2008)

[18] Z. Zhang, K. McDonnell, K. Mueller, "A Network-Based Interface for
the Exploration of High-Dimensional Data Spaces," Proc. IEEE Pacif-
ic Vis, Songdo, Korea, pp. 17-24, 2012.

Fig. 12 Data-centric refinement with the bike data matrix. (a) DIFGBC
plot and (b) the new layout using just the points inside the green box.

(a) (b)

Fig. 13 The variable-centric refinement with the bike data matrix.

casual

temp
atem

reg cnt

	Abstract
	1 Introduction
	2 Related Work
	3 Theoretical Considerations
	3.1 The Space of Contextual Layout Methods

	4 The Generalized Barycentric Coordinates (GBC) Plot
	4.1 The Distance Matrix
	4.2 GBC Layout Error

	5 Our GBC Extensions for More Accurate Layouts
	5.1 Test Datasets
	5.2 Distance Spaced GBC Plot Layout (DGBC)
	5.3 Iterative GBC Plot Error Reduction (IGBC)
	5.4 Force Directed GBC Plot Adjustment (FGBC)
	5.5 Comprehensive Layout (DIFGBC)

	6 Evaluation
	6.1 Data to Data Error
	6.2 Data to Variable Error
	6.3 Variable to Variable Error
	6.4 Overall Error
	6.5 The Error Distribution Display

	7 The GBC Error Explorer
	7.1 The Configuration Control Panel
	7.2 The Heat Map Displays
	7.3 The Parallel Coordinate Display
	7.4 Interactions
	7.4.1 Verification coloring
	7.4.2 Linked displays
	7.4.3 Local layout refinement

	8 Conclusion
	ACKNOWLEDGMENTS
	References

Improving the Fidelity of Contextual Data Layouts Using a Generalized Barycentric Coordinates Framework

Shenghui Cheng and Klaus Mueller

[bookmark: _GoBack]Visual Analytics and Imaging Lab, Computer Science Department, Stony Brook University and SUNY Korea[bookmark: _Ref399446269]Fig. 1 The interface of our system demonstrating the linked display functionality – the highlighted parts are linked with the chosen area.

2

ABSTRACT

Contextual layouts preserve the context of the data with the associated attributes (variables). However, their linear mapping causes errors in the layout – similar data points and variable nodes may not map to similar regions, and vice versa. In this paper, we first unify the various data layout schemes and choose the Generalized Barycentric Coordinates (GBC) plot as the standard way to describe them. Second, we propose three algorithms – distance spaced layout, iterative error reduction, and force directed adjustment – to reduce the layout error of variables to variables, data to variables and data to data, respectively. We find that the combination of these three algorithms can yield large improvements in the layout error and so achieve a more comprehensive layout. Third, we describe an interface, the GBC Error Explorer, which allows users to explore the error using a variety of visualization schemes combined with some interactions.

Keywords: Visual analytics, generalized barycentric coordinates, multivariate data, contextual layout.

Index Terms: H.5.2 [Information Interfaces and Presentation]:

User Interfaces - Graphical user interfaces (GUI), I.3.6 [Computer

Graphics]: Methodology and Techniques - Interaction Techniques

Introduction

Numerous methods have been described for the data matrix visualization. Methods that solely support the identification of clusters and their outliers, such as multidimensional scaling (MDS) [11] or t-SNE [8] are typically oblivious to the attributes of data. But there are settings in which it can be of interest to see the data points in relation to their attributes. For example, an investor might want to see companies in context of the value metrics of their stocks, such as earnings per share, price to earnings ratio, etc. This investor would pick those stocks that best fit his strategies. Such operations are not supported by MDS or t-SNE.

Visualization can be a good medium to first assess the overall data, here the stock market, and then focus on the market segment of interest – a class of stocks with the certain desirable constellation of metrics. There are multiple ways to achieve this. In the method of parallel coordinates [6], the attributes define the vertical axes and the data points form piecewise linear lines going across these axes, called polylines. The investor would then filter the stocks along his or her most salient metrics and so isolate the most desirable stocks.

 Another method lays out the data points in the context of the attributes, and we shall refer to them as contextual data layouts. In these methods, the attributes form special nodes on the data canvas where data points that are ‘stronger’ in certain attributes also come to rest more closely to these attributes (although there can be significant errors – see below). Examples of these types of visualizations are RadViz [14], Star Coordinates [10], and Gravi++ [15]. In this case, the investor would focus on the attribute nodes of greater interest and look at the data points in their neighborhoods. The investor would also be able to assess and recognize conflicts in his set of criteria. There might be no stocks that can fulfill two competing criteria and so he or she would have to make certain trade-offs. Email:{shecheng, mueller}@cs.stonybrook.edu

While the contextual layouts are convenient in that they do not require much filtering, they require other types of interaction, mostly to reduce the errors that result from the attracter/deflector spring-like layout schemes. Often data points that are not related at all come to rest very closely to one another, and moving the attribute points in an interactive fashion can reduce, but not completely eliminate this error, at least not in general.

Our work focuses on contextual layout displays and the errors they commit. We find they are all special forms of the GBC plot [12][13] - the attributes constitute the vertices of a D-sided polygon (where D is the number of attributes) and the data points are placed in its interior. However, even the GBC plot does not preserve accurate relations between the data and the attribute points, and to address this problem we describe a set of practical algorithms which automatically adjust the locations of both data and attribute points such that these relations are better preserved. Finally, we provide an interface that allows users to explore the various layout errors using different visualization schemes augmented with interactions.

Our paper is structured as follows. Section 2 presents related work. Section 3 provides theoretical aspects. Sections 4 and 5 describe the GBC plots and our various layout improvements. Section 6 presents an evaluation. Section 7 describes our diagnostic interface for parameter tuning. Section 8 ends with conclusions.

Related Work

The visualization of high-dimensional datasets essentially follows three major paradigms – parallel coordinates, scatterplots, and 2D space embeddings. Since the visualization of high-dimensional data on a 2D canvas is inherently an ill-posed problem, there is no method without drawbacks. Parallel coordinates, and its radial version, the star plot [2], have the least ambiguity in the 2D mapping process and the serialization of the high dimensional space into the parallel axis configuration allows all attributes to be seen at once. However, the overplotting of polylines can become a significant problem once the number of data points grows moderately large.

Scatterplots suffer less from overplotting, but the projection operation can lead to ambiguities as points located far away in high-dimensional space may project to similar 2D locations. Assembling all possible axis-aligned scatterplots into a scatterplot matrix [4] or supporting the projections by an interactive view manipulation system [12] can help but both require effort to navigate. Similar to the star plot, the method of star coordinates [10] arranges the attribute axes in a radial fashion but instead of constructing polylines it plots the data points as a vector sum of the individual axis coordinates. However the locations of the data points are not unique and so an interactive interface is provided that allows users to manually rotate and scale axes to resolve ambiguities, at least partially.

Many of the ambiguity problems can be overcome by embedding the high-dimensional space onto a 2D canvas via an optimization strategy (MDS, t-SNE, etc.) which seeks to preserve the high dimensional distances – or the statistics – of all point-pairs in the 2D layout. In this way the viewer can easily appreciate neighborhood relations and obtain a good overview of the space quickly. However, as mentioned, this method also has shortcomings – the mapped data points no longer maintain any context with the attributes as this information is typically not preserved in the non-linear mapping. We also use optimization for the 2D layout but retain this context.

Our method generalizes systems that arrange the nodes representing the attributes along a convex shape and lay out the data points in the interior of this shape. RadViz [3] uniformly spaces the attributes as dimensional anchors along the circumference of a circle. The location of the data points is then determined by a weighting formula where data point attributes with higher values receive a higher weight and so increase the attraction of the point to the corresponding anchor points. However, similar to star coordinates, this can lead to location ambiguities which can be reduced by re-ordering the anchor points manually or algorithmically. Gravi++ [14] uses a different weighting formula but also spaces the attributes at uniform distances onto an encompassing circle. In GBC[13] the enclosing primitive is a general convex polygon for the visualization [12]. Finally, even more general is the Dust & Magnet system [16] which allows one to move and adjust the weights of the attributes. None of these methods can guarantee nearby data and variables points are actually neighbors in high-dimensional space.

Theoretical Considerations

Let be the data matrix with rows and columns,

where the rows denote the data points, the columns denote the attributes and is the data value in the th row and th column. Without loss of generality, we assume is normalized to [0, 1].

Let D be the data points (we shall simply refer to them as data):

[bookmark: OLE_LINK21][bookmark: OLE_LINK22]

Let be the data attributes (we shall refer to them as variables).

where T is the transpose function.

The methods we discussed above map data and variables into 2D layout space. We denote and as their locations respectively.

The Space of Contextual Layout Methods

Table 1. The features of different layout methods

		Method

		VF()

		MF ()

		Radviz

		

		

		Star Coordinates

		

Or other

		

		Gravi++

		

Or other free layout

		

		Dust & Magnet

		

Or other free layout

		

		GBC

		

Or other convex polygon

		

		Remarks

		. stands for the strength multiplicator of . is the attraction between dust i and magnet j. is the circle radius.

[bookmark: OLE_LINK35][bookmark: OLE_LINK36][bookmark: OLE_LINK37][bookmark: OLE_LINK38]We argued Radviz, Star Coordinates, Dust & Magnet, and Gravi++ are similar - they all arrange the variables as vertices in the outward periphery of the data points, providing context. To unify them into a common framework, we need a unified notation. We consider two factors: (1) the layout method for the variables vertices, , and (2) the data mapping function, shown for all methods in Table 1.

For VF, a circular layout is most common, so for this paper, we only consider this type of arrangement for the variables. The function, on the other hand, uses slightly different forms of weights to compute the variable node locations. The mapping concept is

identical – all apply a linear function – just some methods perform normalization and others do not.

 While the GBC as described in [12] is more flexible in that it supports generalized polygons, we use it as the standard configuration – a polygon embedded into a circle – to describe the other layout algorithms. The GBC plot on an equilateral polygon is essentially Radviz. We begin with this plot and generalize to others.

The Generalized Barycentric Coordinates (GBC) Plot

The GBC plot is derived from GBC interpolation [12] which extends the method of barycentric interpolation from triangles to multi-vertex convex polygons. The task is to interpolate the value of an interior point P from the values stored at the polygon vertices vi. Referring to Fig. 2, the interpolation weight wi of vi for P is:[bookmark: _Ref399427329] Fig. 2 The GBC Plot.

The interpolated value Pv at P is:

 where and

The GBC plot uses GBC interpolation in reverse fashion. It seeks to compute the position of P in a convex polygon in which each vertex is assigned to one of the attributes. This replaces Pv by the 2D vector P, and the vi by the 2D coordinates of the attribute vertices. We then set the weights to be the values of the n-dimensional vector, normalize them to compute the , and finally use the 2D coordinates of the attribute vertices to interpolate the 2D coordinate of P.

The Distance Matrix

The GBC plot can show the distances of data to data, data to variable and variable to variable. The combination of distance matrices

where , and store the pairwise distance of data points, data points to variables and variables respectively.

[bookmark: OLE_LINK44][bookmark: OLE_LINK45][bookmark: OLE_LINK46][bookmark: OLE_LINK47][bookmark: OLE_LINK48][bookmark: OLE_LINK49][bookmark: OLE_LINK50][bookmark: OLE_LINK51][bookmark: OLE_LINK52]As mentioned, there are various measures which are suitable to express distance. We would like to choose the Euclidean Distance for DD. For DV, it is good to use the value at this dimension. However, we should use 1-vaule since distance and value have opposite meaning. For VV, we would like to pick 1- correlation. Let be the set of Distance Metrics, then

 (1)

GBC Layout Error

[bookmark: OLE_LINK41][bookmark: OLE_LINK42][bookmark: OLE_LINK43]The GBC plot can show the distances of data to data, data to variable and variable to variable, thus the error also combines these three types. We denote as the error, where , and represent the error of data to data, data to variable and variable to variable respectively; is the overall error of the GBC mapping. For more details about the definition, see Section 6. In addition, there is also the error resulting from the GBC layout itself. We will discuss how to deal with this kind of error in Section 7.

Our GBC Extensions for More Accurate Layouts

[bookmark: OLE_LINK55][bookmark: OLE_LINK56][bookmark: OLE_LINK57][bookmark: OLE_LINK58][bookmark: OLE_LINK59][bookmark: OLE_LINK53][bookmark: OLE_LINK54]As discussed, the GBC plot has errors –, and . To reduce the error, we first analyse and reduce each type of error separately, and then combine these effects together to reduce.

Test Datasets

We chose the following data sets to demonstrate our algorithms:

1. Cars dataset – 392 cars with 7 attributes.

2. Sales campaign dataset – 600 data items with 10 attributes.

3. Bike dataset –17,389 instances with 16 attributes.

The GBC layouts for these datasets are shown in Fig. 9 (a).

[bookmark: OLE_LINK8][bookmark: OLE_LINK9][bookmark: OLE_LINK10]Distance Spaced GBC Plot Layout (DGBC)[bookmark: _Ref399427521]Fig. 3 Distance Spaced Layout Pipeline

We begin with the . The variables are arranged around the circle – this type of layout maps the data from high dimension to one dimension. One way to achieve this is by projecting the distance matrix into 1D using MDS. However, we cannot guarantee this method provides a good ordering since MDS becomes increasingly error-prone as the distance matrix increases. Input: The distance matrix (VV)

Output: The variables locations v

 1: V=TSP(VV) //Reorder the variables. is the circle

 2: sumVV= // layout neighbour of .

 3:

 4: for

 5:

 6: endfor

 7: for // Lay out the variables around the circle.

 8:

 9:

10: endfor

Algorithm. 1 Distance Based Layout.

[bookmark: _Ref399399306]Another and more direct way to obtain a linear ordering of the vertices on the polygonal hull is by arranging the vertices through an approximate Traveling Salesman Problem (TSP) solver that operates on the matrix of pairwise correlation distances among the variables. It would choose the minimum length edge as the start edge and keep adding the nearest variables to the endpoints. TSP has been successfully employed to determine a good axis ordering for parallel coordinates [18]. The application for the current case is similar – it also uses the similarity of variables to provide an ordering, but now we also space them apart according to the similarity.

We place all attribute vertices on a circle, ordered by the distance-based TSP solver and spaced apart by the pairwise distances. The process is illustrated in Fig. 3 and the algorithm is given in Algorithm 1. Fig. 9 (second column) shows the outcome of this experiment for the three datasets we tested. We observe a much improved class separation for all of them. We also observe, from Table 2, that the error of variable to variable is reduced.

[bookmark: OLE_LINK11][bookmark: OLE_LINK15][bookmark: OLE_LINK16]Iterative GBC Plot Error Reduction (IGBC)

[bookmark: OLE_LINK60][bookmark: OLE_LINK61][bookmark: OLE_LINK62][bookmark: OLE_LINK63][bookmark: OLE_LINK65][bookmark: OLE_LINK66]Next we aim to reduce . In the GBC plot, a data point’s value can be gauged by its location – if it is located close to a given variable point then it has a high value in the corresponding attribute, and vice versa. Hence, each variable point has a set of iso-contours where a data point’s value is constant. In this paper, we restrict our study to linear contours, but an extension to non-linear contours would follow similar error-reduction principles.

Our method seeks to reconstruct an error polygon for each data point and iteratively reduces the size of this polygon. Fig. 4 provides an illustration and Algorithm 2 lists the pseudo code.

[bookmark: _Ref399427615]Fig. 4 The error polygon

[bookmark: OLE_LINK39][bookmark: OLE_LINK40]The first assumption our algorithm makes is the existence of a set of distance contours that encode the importance of a variable to a given data point. Suppose we have the variables vertices and a test data item () with its mapping location as P. Fig. 4 examines the distance contours for . Assuming the data item has been normalized to a unit vector, the maximum importance a variable can have is 1.0. This would mean in the case examined that =1.0 and so P would coincide with in the plot. In contrast, if =0.0 which is the minimum importance, then with the current vertex ordering P would need to fall on the edge , or . Any other value would lead to a placement of P onto some contour in between. Fig. 4 shows the contour for =0.6. It is constructed by connecting v4 with all vertices vi and marking the points where . Connecting these points yields the contour.

[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK7]Next we find on the error polygon (marked as) by intersecting the contour with the line that connects with P. Performing this procedure for all variables yields all vertices of the error polygon (marked as polygon). The iterative step concludes by moving P into the center of the error polygon, marked as P’, and then a new iteration begins.

In practice, we iterate about 20 times which completes in a couple of seconds and so does not cause a significant performance drop. The result of this algorithm is shown in Fig. 9 (third column). We observe the IGBC scheme also brings improvements in terms of cluster separation, but not as strong as DGBC.

The change of error is shown in Fig. 5. We observe that converges for all three test data sets. But we also see here (and in Table 2) this optimization scheme yields large improvements only for the car and bike data but not for the sales campaign data. This is because the campaign data is already well distributed (see Fig. 1).

Force Directed GBC Plot Adjustment (FGBC)

What remains is the . We can adjust the locations of the data points via traditional MDS to reduce this error. A popular MDS [bookmark: OLE_LINK64]Input: DV, P, v, error threshold, maximum iterations .

Output: the data points locations.

[bookmark: OLE_LINK76][bookmark: OLE_LINK77][bookmark: OLE_LINK78] 1: while < threshold || > max-threshold

 2: for each data point P

 3: for each variable vertex vj

 4: Compute distance contour.

 5: Compute error polygon vertex .

 6: endfor

 7: Construct error polygon EP formed by all .

 8: Move P to the center of EP.

 9: endfor

10: Compute and iterations .

11: endwhile

Algorithm. 2. Iterative Error Reduction.

 Algorithm. 3. Force Directed Adjustment

Input: DD, P, v, error threshold, maximum iterations.

Output: the data points locations.

1: if < threshold || > max-threshold, return.

2: for each data point Di

3: Compute the forces according to the error.

4: Compute the resultant force .

5: Compute the acceleration by the force.

6: Move this data point for some period.

7: endfor

8: Compute the error and iterations .

9: endif

[bookmark: _Ref399429044]Fig. 5 The change of the data to variable error.

[bookmark: _Ref399429870]Fig. 6 The change of the data to data error.

scheme is force directed layout [7][5][18]. It iteratively displaces data points until all pair-wise distances in the layout match those in high-dimensional space with minimal error.

In our particular implementation, we construct a network where the vertices correspond to the data points and the edges are springs. (see Fig. 7). Suppose A, B, C, D, E are the fixed data points and P is the point whose location we plan to adjust. P has two types of distances to these five points: (1) the high-dimensional space distances and (2) the 2D layout distances. Their difference forms the error and we should move P in a direction that reduces this error the most. The algorithm sets the difference as a force – either drag or push – in each vertex direction. We use , , , and to denote the force vectors from each vertex and they together form an aggregate force as to move P. The algorithm is given in Algorithm 3.

[bookmark: OLE_LINK79][bookmark: OLE_LINK80]The results of this algorithm for our data sets are shown in Fig. 9, fourth column, and the change is listed in Fig. 6. We observe converges. Table 2 reveals this scheme yields large improvements in for the car and the campaign data but not for the bike data.

[bookmark: _Ref408672471]Fig. 7 The force directed adjustment

[bookmark: _Ref399317311]Comprehensive Layout (DIFGBC)

The previous sections described the three algorithms {D, I, F} GBC to reduce three types of error. Now, to reduce the overall error, we need to combine them into a single algorithm. The problem is to determine the order of the three algorithms since they can affect each other. In practice we fix the variables first (with DGBC) since this provides a mapping that is more accurate than the one obtained when the mapping error is reduced first. After running DGBC, we have a choice between first moving the data points with respect to the variable (IGBC) and then adjusting the data points with respect to each other (FGBC), or vice versa. There is no clear intuition which order would be better, but for all datasets we tried, the former order gave better results. We therefore use this order – DGBC, IGBC and FGBC – refer as DIFGBC. The final column of Fig. 9 shows the outcome. We observe the layout has inherited improvements from three schemes, but the effects of DGBC are strongest. [bookmark: _Ref399430119]Fig. 8 The error development over the course of the correction.

Finally, the change of the error is shown in Fig. 8 and Table 2. We can see when DGBC runs, the reduces sharply; then IGBC yields a large improvement of ; finally, FGBC reduces the . We can also observe when IGBC and FGBC are running, they will somewhat increase the and respectively. There exists a trade-off – we usually pay more attention to the – run the IGBC first, and then FGBC later for small adjustments. The order of the three adjustments can be altered if user has different priorities.

The has higher error than and since GBC maps the variables to 1D but the other two maps to 2D. But and are also important – they can preserve the accurate data distribution etc.

[bookmark: _Ref399231079]Evaluation

To gauge the quality of a layout, we use the normalized stress metric between , the matrix of low-dimensional distances , and , the matrix of high-dimensional distances :

 (2)

[bookmark: OLE_LINK29][bookmark: OLE_LINK30]We use this stress metric to gauge, and . Each, however, uses a different distance metric for C, set by F in equation (1).

Data to Data Error

The is due to the difference between L and C. For L and C, we both use Euclidian distance. Now suppose is the Euclidean distance. We compute the normalized form of each distance as

Data to Variable Error

The GBC plot uses F = (1 - Value) for C – a Cij is the jth dimension value of the ith data as . An Euclidian (type) distance for L. However, since the location of the data point is defined by the contour – it uses to represent , we need to use a scale ratio for in the variable

[bookmark: _Ref399427548]Fig. 9 The GBC error reduction with car data (first line), campaign data (second line) and bike data (third line). The color shows the k-means clusters [9] in the high dimensional distances. The columns are GBC, DGBC, IGBC, FGBC, DIFGBC in order.

 GBC DGBC IGBC FGBC DIFGBC

(1, a)

(1, b)

(1, c)

(1, d)

(1, e)

(2, a)

(3, a)

(2, b)

(3, b)

(2, c)

(3, c)

(2, d)

(3, d)

(2, e)

(3, e)

car

campaign

bike

 (3)

Then the real distance and mapped distance can be obtained as

[bookmark: _Ref397956851]Variable to Variable Error

This error uses F = 1 - Correlation for C. For L, since the GBC places the variables around the circle, we can use the arc length to measure the distance between two variables. The sum of distances of neighboring variables around the circle is its perimeter:

 (4)

where is the neighbor point in the counterclockwise of . However, in the variable to variable distance, we cannot guarantee the sum of the neighbor variables distances satisfies condition (4), so we define a scale ratio :

 (5)

Then the real and mapping distance can be obtained as:

 (arc length) [bookmark: _Ref399446035]Fig. 10 The error distribution with (a) the car data (b) the campaign data (c) the bike data. Brighter red tones correspond to high value.

(a)

(b)

(c)

[bookmark: _Ref399318114]Overall Error

[bookmark: _Ref399588694]As suggested in Section 5.5, users may have different priorities in the types of distances. Apart from algorithm ordering, we can also express these by giving different weights to the three distances. The overall error is then defined as follows:

 (6)

[bookmark: _Ref399441536]As was also suggested in Section 5.5, these priorities are likely , then followed by and so we set .

[bookmark: _Ref399517381]The Error Distribution Display

To give the user an overview of the error distribution, we provide a visualization of it (see Fig. 10). We color each data and variable point as a function of its overall error. In this way the features of the error distribution can be easily identified. From Fig. 10, we can see the data points close to the center of the GBC plot have a high error.

 Table 2. The error reduction table

Error

Layout

Car

Campaign

Bike

GBC

0.65

2.14

2.91

DGBC

0.34

0.33

1.62

Reduce

49%

85%

44%

GBC

0.39

0.44

0.49

IGBC

0.29

0.43

0.35

Reduce

25%

2%

29%

GBC

0.29

0.4

0.45

FGBC

0.23

0.25

0.43

Reduce

28%

62%

5%

GBC

0.53

1.41

1.87

DIFGBC

0.3

0.31

1.09

Reduce

44%

78%

41%

The GBC Error Explorer

As mentioned before, these types of layouts all suffer from a common problem – the data overlap error (different points have the same position). This kind of error, to the best of our knowledge, is hard to reduce. Springview [1] allows for simultaneously viewing both RadViz and parallel coordinates for view optimization and clutter reduction. We extend this idea and allow users to discover the error by combining different visualization methods into a diagnostic parameter tuning interface – GBC Error Explorer (Fig. 1).

[bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK14]Our GBC Error Explorer provides an interactive visual analytics interface to provide the insight. Its interface features the following components: parallel coordinate display, distance heatmap, layout display, error Vis panel and configuration control panel.

[bookmark: OLE_LINK25][bookmark: OLE_LINK26]The parallel coordinates display provides an overview of the data to help users understand the data values. The distance heat map visualizes the distance matrix. The layout display is the main part of our system – it shows the layout of the distance matrix. The error Vis panel visualizes the error of the layout. Finally, the configuration control panel allows users to manipulate the various parameters.

The Configuration Control Panel

This control panel contains five major groups: parameter configuration, layout mode, layout color mode, error visualization panel color mode and PC line mode.

The parameter configuration group allows users to set the distance metric for each distance sub-matrix: Euclidean (E), correlation (C), value (V). The layout mode group enables users to choose the layout strategy. The layout color mode error color mode define the color for layout and error respectively. Finally, the PC line mode enables users to pick the line mode of the parallel coordinates.

The Heat Map Displays

The Distance Heatmap

The heatmap displays on the left visualizes the distance matrix colored using the color bar. We provide the distance matrices DD, DV and VV. However, to lay them as a unit block and maintain the symmetry, we like to add one more sub-matrix VD to store the distance of variables to data - same as DV (Fig. 1). We find the data are tightly distributed into 3 groups since we find the three blocks.

The Error Vis Panel

[bookmark: OLE_LINK67][bookmark: OLE_LINK68][bookmark: OLE_LINK69]The heat map on the right is the error Vis panel. Since the data matrix usually has less variables than data, it is important to know the variables error. Thus, our error Vis panel shows the and vertically with the average (and) on the right border. See Fig. 1. We find the data has higher error with the variable “PROI”.

The Parallel Coordinate Display

The parallel coordinate display shows the data to their dimensions. We have different line modes - straight lines can give users a direct way to see the data, while curve lines are better for the clutter [17].

Interactions

Our interface provides several types of interactions that manipulate the layout display. Some of these interactions allow users to appreciate the layout errors directly in the display. Others allow filtering operations such as zooming. Considering the different feathers of the data, we apply different techniques to them.

 Verification coloring

Distance Color

Fig. 11 a shows our system’s capability to visualize the true high-dimensional distances with respect to a user-selected variable (green box) by intensity-shading all points in terms of that distance. An irregular or adverse shading pattern would point to problems, which is not the case for the chosen example. We can clearly see the car has three types of “origin”- from the different color levels.

Error Color

Likewise, Fig. 11 b shows the point-wise layout error with respect to the selected variable (green box). Here we see that the points in the center seem to have a larger layout error– similar conclusion we got from Fig. 10 (a).

[bookmark: _Ref407800946]Fig. 11 Verification coloring of (a) distance and (b) error.

(a)

(b)

Accel

Origin

MPG

Year

CYL

Weight

Hpower

Accel

Origin

MPG

Year

CYL

Weight

Hpower

Linked displays

Our system also supports linked displays. Users can select a subset of the data in one display and see these in other displays. When we look at the campaign data matrix in the GBC layout, we find they distribute well as three clear clusters. But we might want to know the details of them. See Fig. 1. We can confirm the yellow group points are close to each other with similar error (from heatmaps) and the variances (from parallel coordinates).

Local layout refinement

[bookmark: OLE_LINK27][bookmark: OLE_LINK28]The layout can often improve locally if one restricts it to just this region and corresponding high-dimensional subspace. We support two types of local refinements – data-centric and variable-centric.

[bookmark: OLE_LINK31]Data-centric refinement

In the data-centric refinement, the user draws a box in the layout display – such as the green box in Fig. 12a – and then only these data points are included into a focused layout. We saw in Fig. 9c the bike dataset had data points near the center with large error. We select this region and lay out only the points inside it. See Fig. 13b. Now these clusters are much clearer and more defined.

[bookmark: OLE_LINK32][bookmark: OLE_LINK33]Variable-centric refinement[bookmark: _Ref399447096]Fig. 12 Data-centric refinement with the bike data matrix. (a) DIFGBC plot and (b) the new layout using just the points inside the green box.

(a)

(b)

[bookmark: OLE_LINK34]Conversely, users also draw a box (see the blue one) into the layout display but now only the variables inside this box. This is essentially a subspace selection (see Fig. 12 b). Suppose we wish to know if the bikers are affected by the temperature easily. So we choose a subspace with the related variables, such as temperature, count etc. See Fig. 13. We find the variables form three groups representing the temperature, the number of bike and casual factors respectively.

[bookmark: _Ref408672720]Fig. 13 The variable-centric refinement with the bike data matrix.

casual

temp

atemp

reg

cnt

Conclusion

We have presented a framework that can improve the fidelity of contextual data layouts, in order to better convey the relations of data items and data attributes. We first unified the different data layouts in this class of visualization algorithms, choosing the GBC plot as the standard formulation. We then proposed three algorithms – distance spaced layout, iterative error reduction and force directed adjustment – to reduce the error. We also developed an interface by which users can explore the error with interactions.

In this current work we have focused on contextual layouts in which the attributes (variables) are arranged at the periphery of the data points. While separating the variables and data points makes for a structured display, better optimizations might be achievable by allowing the attribute points to mingle with the data points. This is subject of current research efforts.

ACKNOWLEDGMENTS

This research was partially supported by NSF grant IIS 1117132 and the MSIP, Korea, under the "IT Consilience Creative Program (ITCCP)" (NIPA-2013-H0203-13-1001) supervised by NIPA. We thank the reviewers, in particular the primary, for their diligent comments that greatly improved the presentation of the work.

References

[1] [bookmark: _Ref398324040]E. Bertini, L. Aquila, G. Santucci. “SpringView: Cooperation of Radviz and Parallel Coordinates for View Optimization and Clutter Reduction.” Proc. of IEEE International Conference on Coordinated & Multiple Views in Exploratory Visualization (CMV), 2005.

[2] [bookmark: _Ref382946533]J. Chambers, W. Cleveland, P. Tukey, Graphical Methods for Data Analysis, Duxbury Press, 1983.

[3] [bookmark: _Ref383185179]G. Grinstein, M. Trutschl, U, Cvek, “High-dimensional visualizations,” Proc. Visual Data Mining Workshop, KDD, 2001.

[4] [bookmark: _Ref382947014]J. Hartigan, “Printer Graphics for Clustering,” J. Statistical Computation and Simulation, 4(3): 187-213, 1975.

[5] [bookmark: _Ref407464620]S. Ingram, T. Munzner, M. Olano, “Glimmer: Multilevel MDS on the GPU”. IEEE Trans. Vis. Comput. Graph. 15(2): 249-261 (2009)

[6] [bookmark: _Ref382914103]A. Inselberg, B. Dimsdale, “Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry,” Proc. IEEE Visualization, pp. 361-378, 1990.

[7] [bookmark: _Ref407883298]A.Morrison, G. Ross, M. Chalmers, “Fast multidimensional scaling through sampling, springs and interpolation.” Information Visualization 2(1):68-77 (2003)

[8] [bookmark: _Ref399538637]L.Maaten, G.Hinton, “Visualizing data using t-SNE”, J. Machine Learning Research, 9: 2579-2605, 2008

[9] [bookmark: _Ref407800458]MacQueen, J. B. (1967). "Some Methods for classification and Analysis of Multivariate Observations". Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. pp. 281–297. MR 0214227. Zbl 0214.46201.

[10] [bookmark: _Ref399322005][bookmark: OLE_LINK4]E. Kandogan, “Star Coordinates: A Multi-Dimensional Visualization Technique with Uniform Treatment of Dimensions,” Proc. IEEE Information Visualization, Late Breaking Topics, pp. 9-12, 2000

[11] [bookmark: _Ref391109017]J. Kruskal. M. Wish, Multidimensional Scaling. Sage Publications, 1977.

[12] [bookmark: _Ref382947169][bookmark: _Ref382914036]J. Nam, K. Mueller, "TripAdvisorN-D: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail," IEEE Trans. Visualization and Computer Graphics, 19(2):291-305, 2013.

[13] [bookmark: _Ref399590005][bookmark: _Ref382913833][bookmark: _Ref382959175]M. Meyer, A. Barr, H. Lee, M. Desbrun, “Generalized Barycentric Coordinates on Irregular Polygons,” J. Graphics Tools, 7(1), 2002.

[14] [bookmark: _Ref399589883][bookmark: _Ref382959740]P. Hoffman, G. Grinstein, K. Marx, I. Grosse, E. Stanley, "DNA Visual and Analytic Data Mining", Proc. IEEE Vis, pp. 437-441, 1997.

[15] [bookmark: _Ref399589943]K. Hinum, S. Miksch, W. Aigner, S. Ohmann, C. Popow, M. Pohl, M. Rester, “Gravi++: Interactive Information Visualization to Explore Highly Structured Temporal Data,” J. Universal Computer Science 11(11):1792-1805, 2005.

[16] [bookmark: _Ref383184485][bookmark: _Ref399251364]J. Yi, R. Melton, J. Stasko, J. Jacko, "Dust & Magnet: Multivariate Information Visualization using a Magnet Metaphor," Information Visualization, 4(4) : 239-256, 2005.

[17] [bookmark: _Ref399589846][bookmark: _Ref383975973]H.Zhou, X.Yuan, H.Qu, W.Cui, B.Chen: Visual Clustering in Parallel Coordinates. Comput. Graph. Forum 27(3): 1047-1054 (2008)

[18] [bookmark: _Ref399589796]Z. Zhang, K. McDonnell, K. Mueller, "A Network-Based Interface for the Exploration of High-Dimensional Data Spaces," Proc. IEEE Pacific Vis, Songdo, Korea, pp. 17-24, 2012.

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.emf

Q

5

Q

3

Q

2

Q

1

v

5

v

4

v

3

v

2

v

1

P

EP

4

EP

5

EP

3

EP

2

EP

1

P

'

image14.emf

Q

5

Q

3

Q

2

Q

1

v

5

v

4

v

3

v

2

v

1

P

EP

4

EP

5

EP

3

EP

2

EP

1

P

'

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.jpg

image24.jpg

image25.jpg

image26.jpg

image27.jpg

image28.jpg

image29.jpg

image30.jpg

image31.jpg

image32.jpg

image33.jpg

image34.jpg

image35.jpg

image36.jpg

image37.jpg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpg

image54.jpg

image55.jpg

image56.jpeg

image57.jpeg

image58.jpeg

image59.jpg

image60.jpg

image61.jpeg

image62.jpeg

image63.jpg

image64.jpeg

image65.png

image66.png

image1.tiff

