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Abstract— Big Data analysis for scientific data is extremely 

challenging due to the following features – high resolution, 

extreme scale, high acquisition rate, multivariate data format 

and aggregating in the streaming fashion. Therefore, a visual 

analysis tool that can process, reduce, manipulate and display 

extreme-scale data is critical for scientists to make the right 

decision on-site and adjust their measurement strategies during 

the experiment. The lack of these tools not only severely reduces 

the scientific throughput, but also impairs our capability for 

scientific discoveries. In this paper, we describe StreamVisND – an 

interactive framework that provides several linked displays 

designed to reveal multivariate temporal behavior patterns from 

various perspectives. All of these displays generalize standard 

visualization paradigms such as line graphs from time samples to 

time intervals. As such the integral data type of our application is 

the time interval which we represent as a vector of time samples. 

Relationships of time intervals are expressed as similarities, 

possibly warped over time, of pairs of time vectors. These 

similarities can be among different variables at the same time 

interval, or different time intervals of the same variable. The 

former results in a line graph of streaming variables, while the 

latter results in a new display we called illustrative transform 

lines of time intervals over the variables. For both displays since 

the comparative metric is now pairwise similarity, as opposed to 

absolute value, we require an optimization algorithm, such as 

multidimensional scaling to perform mapping into display 

coordinates. Additional displays include a 2D embedding of 

temporal snapshots of the variables, as well as a 2D embedding of 

temporal relationships changes among the variables. We 

demonstrate our system in an environmental pollution 

diagnostics setting and have obtained encouraging results. 

Keywords— information visualization; streaming data; high 

dimensional data; time-series; embedding 

I. INTRODUCTION 

State-of-the-art scientific facilities, such as the NSLS-II, 
generate high-resolution data streams at an aggregated rate of 
Giga-bps. The enormous size of the data makes their 
exploration, analysis, and summarization extremely 
challenging; yet only with extensive analysis can deep 
scientific insights be extracted. Currently available tools were 
not designed with these massive datasets in mind. As a 
consequence, analysis remains largely manual, burdening users 
with tedious manipulation tasks that are both inconvenient and 
error-prone. Therefore, an on-line visual analysis tool that can 

process, manipulate and display extreme-scale data is critical 
for them to make the right decision on-site and adjust their 
measurement strategies during the experiment. The lack of 
these tools not only severely reduces the scientific throughput, 
but also impairs our capability for scientific discoveries. The 
new framework we propose is designed to tackle these 
challenges. Via data visualization and interactive visual 
analytics it will provide targeted information to users in real 
time, enabling timely assessment and decision-making as well 
as more rapid discovery of subtle trends.  

Beside scientific domain, streaming data have become 
ubiquitous in recent years and arise in many aspects of our 
daily lives. Examples are social networks, stock tickers, 
pollution measurements, security feeds, economic trends, credit 
card transactions, computer networks, science experiments, and 
abundantly more. Streaming data embrace all of the 5V of big 
data – volume, velocity, variety, veracity, and value. They are 
real-time time-series data that afford real-time responses to the 
measured phenomena. This provides unprecedented 
opportunities for businesses, government, first responders, and 
scientists to react to emerging trends. While some of these 
responses can be automated, it is still desirable to also insert a 
human into the loop, not only to prevent catastrophic 
outcomes, but also to add critical human expertise and intuition 
into the process. Whenever a human is involved in data science 
applications, visualization and visual analytics can play a 
critical role. They afford a highly effective gateway to a 
human’s creative faculties and they also have a high propensity 
of keeping the human expert engaged and alert. We describe 
such an interface in this paper. 

Pressing issues in streaming data are (1) the one-pass 
constraint – the data need to be processed in-stream and not all 
can be stored, (2) concept drift – the statistical properties of the 
derived predictive model keep changing continuously in 
unpredictable ways, and (3) concept evolution – new features 
can appear in the predictive model which may either 
supplement or outdate existing features. Additional 
complexities arise from the fact that just like other (big) data, 
streaming data is also often multivariate. There are many 
economic factors – not just one – and there are also many 
stocks, security metrics, environmental pollutants, and so on. 
An effective visual analytics system must be able to deal with 
all of these issues. The framework we propose, StreamVisND, 
particularly addresses the multivariate nature of streaming data, 
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Fig. 1. Interface of our StreamVisND prototype. It consists of five parts – stream graph illustration, slice similarity plot, relation display, window transforms 

demonstration (with weight function) and configuration control panel. The relation display highlights the relation change on 2010/09/12 in the blue 
rectangle and exploration display traces the local change of variables at a smaller exploration size. The orange rectangle selects some time slices so that 

they are highlighted in the stream graph with the slice bands.  

but is also responsive to the other complexities mentioned 
above.  

Our system operates on subsequences of the time-series 
data which we call time intervals. This allows us to compare 
not just time values but time behaviors, which is aptly more 
informative and salient in the context of time-variant data. We 
represent each such time interval as a high-dimensional vector, 
one for each variable, and then define a set of distance metrics 
that can be employed to gauge similarity of behavior. 
Essentially, our framework allows users to recognize temporal 
co-movement of variables which can give important hints on 
relationships that may exist among these variables. At the same 
time, we can also compare the time behaviors of one or more 
variables exhibited at different points of time, for example, to 
map events of the past into the present for special analytics 
tasks.  

Our framework essentially generalizes the unit of measure 
from time point sample (TPS) to time interval sample (TIS) 
which is a vector quantity. We then define a set of similarity 

metrics for TIS after which we use standard line plots displays 
for visualization in the usual mode. It should be noted, 
however, that these displays now visualize similarity of time 
behavior as opposed to scalar values. As such, vertical 
distances are now gauged by pairwise similarity and not value 
differentials. While the latter requires simple ordering, the 
former requires optimization which we perform using the stress 
equation of multidimensional scaling (MDS). 

The length of the time interval is obviously a critical 
element of our framework. We describe several methods by 
which good intervals for the TIS can be chosen. In addition, we 
also describe several similarity functions by which pairs of TIS 
can be compared. 

Figure 1 shows an annotated screenshot of our prototype. In 
the center is a Stream Graph by which users can select a certain 
range of time slices for display in the Time Slice Similarity 
Plot. A time slice is just a single multivariate time point. This 
Time Slice Similarity Plot is an MDS plot in which more 
similar time slices are laid out more closely, and time is 

Relation Display 

StreamGraph Display 
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mapped to color. We see that earlier time slices are more 
similar since they clump together in the center. The Temporal 
Attribute Relation Display is the TIS similarity line plot as 
discussed above. Finally, the Dynamic Local Change Plot is a 
temporal MDS display which visualizes the change of TIS 
similarity over time.  

Our system can be utilized in post-hoc batch mode and 
within a streaming scenario. In the latter, when connected to a 
real data stream, all displays would be constantly updated. 
Reservoir-type sampling with temporal alignment could be 
added, but we have not done this at the current time. Our 
prototype interface can be regarded as a cockpit for streaming 
data where the user can see different aspects of temporal 
similarity at the same time.   

Our paper is structured as follows. Section 2 presents 
related work. Section 3 describes the time point sample 
visualization and Section 4 presents our time interval 
visualization in details. Section 5 illustrates a case study. 
Section 6 ends with conclusions. 

II. RELATED WORK 

Multivariate streaming data possess both multivariate and 
time series features. In the following we will discuss related 
multivariate data displays, multivariate data space embeddings, 
and then the extension to streaming data visualizations. 

A. Multivariate Data Displays 

Numerous multivariate data displays have been proposed 
for multivariate data visualization. Parallel coordinates [13], 
and its radial version, star coordinates [16], create axes either 
vertically or radially, and then map the data as polylines. They 
display the multivariate data and let users probe and capture 
certain patterns. However, clutter is a serious problem when 
the number of data items becomes large. Scatterplot matrices 
[7], on the other hand, combine all the pairwise scatterplots as 
sub-blocks and display the bivariate relations. Their growth 
however, is polynomial in the number of dimensions. Radviz 
[10], arranges the attributes as dimension anchors [11] that are 
equally spaced around the circle and then map the data items 
inside the circle via linear interpolation. However, the 
overplotting of the points becomes a significant problem. 
Generalized barycentric coordinates (GBC) [19] and its 
improved version [1] can cause less overplotting by reducing 
the layout error among the data and attributes. However, even 
for the improved GBC plot, its error is still high [3]. This error 
will only increase when the data becomes dynamic. 

B. Multivariate Data Space Embeddings 

Multivariate displays aim to display the multivariate data 
and allow users to understand data patterns. However, these 
displays cannot preserve the relations among the data items and 
attributes well. Multivariate data space embeddings can map 
the multivariate data space into a 2D layout while preserving 
the similarities. 

PCA [15] takes the plane formed by two eigenvectors and 
projects the data into this plane. This linear mapping can 
preserve the similarities among the data, but it causes much 
distortion. MDS [17][21] takes all pairwise Euclidean distances 

and optimizes the data layout to preserve these distances. 
ISOMAP [23] and locally linear embedding [22] take neighbor 
structures into consideration and visualize them in the 2D 
plane. t-SNE [18] aims to extract clusters in the data. Our work 
is inspired by these space embeddings and extends them for 
streaming data visualization. 

C. Streaming Data Visualization 

The relations in the streaming data keep changing over 
time. The stream graph and its cousin, Themeriver, are 
techniques to visualize changing attributes. However, they 
cannot convey varying relations. 

To adapt multivariate data space embeddings into 
streaming data visualization, Dwyer et al [1] mapped the data 
slices onto a 2D layout and used the third dimension to 
represent the time scale. This allows users to see the time axis 
while observing multivariate relations. However, 3-
dimensional visualizations are difficult to explore. Steiger et al 
[20] proposed to split the continuous time-series data into fixed 
length segments and visualized them via self-organizing maps. 
This can aid users in tracking certain patterns in the similarity 
layout. However, they only consider the similarity of segments 
but ignore the attributes. In addition, they can only visualize 
discrete relations but users cannot assess the continuous 
relation transformations. Our method [1] also subdivided 
streams into slices, but it can display the segments and 
attributes relations, discrete and continuous. Jäckle [14] et al. 
presented (at the same time) a temporal MDS, which maps 
each slice into 1D via MDS. However, the un-organized MDS 
cannot arrange corresponding points well and makes it difficult 
to track certain patterns. Our technique connects the 
corresponding points from each slice, and generates a line to 
see the evolving pattern.  

In order to satisfy the goal of assessing relations among 
data slices and attributes, and visualizing streaming data in a 
more relationship-centric manner, we design an interface (see 
Fig 1) called StreamVisND. It consists of five parts – stream 
graph illustration, similarity plot, relation display, window 
transforms demonstration (with weight function) and 
configuration control panel. 

III. TIME POINT SAMPLE (TPS) BASED VISUALIZATION 

The multivariate streaming data typically contain numerous 
(assume n) variables or attributes during a certain time period 
with T time stamps. Then the multivariate data can be 
presented as a set of time-series variables, 

[𝑉1, 𝑉2, … , 𝑉𝑛] (3.1) 

where Vi is the ith time-varying variable, attribute or 
dimension. 

At each time stamp, the streaming data generates a record, 
which we call data slice. Each data slice S is an n-dimensional 
vector, 

𝑆𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛] (3.2) 

where xij (j=1,2,…, n) is the ith (i=1,2,…,T) slice record in the 
jth dimension.  
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Fig. 2. Data slices and variables visualization with different distance 

metrics. (a) Euclidean distance (b) Correlation distance (c) SSIM 

distance (d) Correlation distance (e) DTW distance (f) auto-regression 
distance.  

In this way, the streaming data forms a high dimensional 
data matrix DM with T rows and n columns – the rows 
represent the data slices (S) at different time stamps, while the 
columns represent the attributes or variables (V): 

𝐷𝑀 = [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑇1 ⋯ 𝑥𝑇𝑛

] (3.3) 

Our test dataset in this paper is an air pollution data sample 
of a city (A) in 2010. It contains the proportions of “SO2”, 
“NO2”, “NO”, “PM10” and “O3” with 365 daily records.  

Our first attempt to visualize these streaming data was to 
simply visualize these time point slices with a stream graph 
(Sec. III.A), slice similarity displays (Sec. III.B), variable 
similarity displays (Sec. III.C) and additional visualization 
techniques (Sec. III.D). 

A. Stream Graph 

The stream graph is a common visualization method for 
streaming data. It represents the values of the attributes (called 
themes) as vertical bars and joins them horizontally over time. 
This yields a display of layers – one layer per attribute – with 
time-varying cross-sections. While the stream graph presents 
streaming data continuously, it is difficult for analysts to 
assess, in an explicit way, the similarities of different time 
slices and the changing relations of the attributes over time. We 
have implemented this approach and plotted the pollution data 
in Fig. 1. From Fig.1, we could observe that NO and NO2 have 
high values at the beginning and ending of the year, but low 
values in the middle, while O3 behaves complexly opposite. 
The reason is simple - nitrogen oxide destroys O3. However, 
with the stream graph, analysts can only observe the 
continuous value change but it is difficult to tell the similarities 
or differences among different slices or variables. 

B. Slices Similarity Functions 

Euclidean Distance 

The Euclidean distance typically measures the vector 
distance in Euclidean space. Suppose we have two slices 
X=[x1, x2,…., xn] and Y=[y1, y2,…, yn]. The Euclidean distance 
DisEuclidean between them is  

𝐷𝑖𝑠𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                            (3.4) 

This distance computes the similarities based on the actual 
values in the corresponding dimensions -- if two vectors have 
similar values in each dimension, this distance will be small 
and vice versa. This metric essentially provides the data 
distributions based on its values as shown in Fig. 2(a). The 
brightness is encoded according to the time stamps of the slices 
(the same for the following sections). In this example, each 
point represents one day. We observe that later days are similar 
and mapped to the display center, while earlier days are more 
dissimilar and are mapped to the periphery. 

Correlation Distance 

The Euclidean distance that acts on absolute value 
similarity is not sufficient when two vectors have similar trends 
but quite different values. To evaluate their similarity, we need 

another distance metric – correlation distance, which 
emphasizes the relative component similarity. This distance 
could be calculated via Pearson correlation. In order to 
consistently reflect the meaning of distance, we choose the 1-
correlation as the metric: 

𝐷𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 1 −
𝐸[(𝑋−𝜇𝑋)(𝑌−𝜇𝑌)]

𝜎𝑋𝜎𝑌
                       (3.5)      

where E is the expectation, 𝜇𝑋 and 𝜇𝑌are the means of X and Y 
respectively, and 𝜎𝑌 and 𝜎𝑌 are the standard deviations of X 
and Y respectively. As indicated in Fig. 2(b), we can find the 
later slices on the bottom are quite scattered, which reveals that 
their components in terms of combination ratios of attributes 
are different. On the contrary, the slices labeled in the green 
oval maintain tight relations. This stable time period might 
imply, for instance, the specific pollution sources during that 
time.  

Structural Similarity Index  

The Euclidean distance and correlation distance gauge the 
similarity from “value” and “component” views, respectively. 
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However, they neglect the vector perceptual topology that 
human observers are most sensitive to – the mean, contrast and 
structure. To identify the vectors with similar topology, we 
utilize a structure based distance metric - Structural Similarity 
Index (SSIM) [12].  

  𝐷𝑖𝑠𝑆𝑆𝐼𝑀 = [
2𝜇𝑋𝜇𝑌+𝑐1

𝜇𝑋
2 +𝜇𝑌

2+𝑐1
]𝛼 ∙ [

2𝜎𝑋𝜎𝑌+𝑐2

𝜎𝑋
2 +𝜎𝑌

2+𝑐2
]

𝛽

∙ [
𝜎𝑋𝑌+𝑐3

𝜎𝑋𝜎𝑌+𝑐3
]

𝑟

            (3.6) 

where 𝜎𝑋𝑌  is the covariance of XY, 𝛼 ,  β  and γ  are the 
parameters for mean, contrast and structure respectively. The 
constants c1, c2, and c3 are typically small and prevent 
numerical instabilities when the main terms are close to zero. 
In this paper, we emphasize the structural aspect and make 𝛼 
and β equal to 0. The result is shown in Fig. 2(c), where we 
observe the structures of the slices are quite diverse. There is 
no salient structural similarity depending on the slice 
timestamp now. For instance, some later slices (circled in green) 
have similar structures with the earlier days.  

C. Variable Similarity Functions 

As opposed to slice based comparison, we can process the 
data “by column” i.e. treat each variable (attribute) as a time-
series vector and compare and plot their similarities. Some 
metrics in the last section are still suitable such as computing 
the correlation distance among the variables and visualizing 
them by MDS. However, it no longer makes sense to compare 
the Euclidean distance between two attributes due to unequal 
measurements and normalization. New distance metrics are 
more desirable for gauging the difference. Therefore, we 
propose two different distance metrics for the variables. 

Correlation Distance 

The correlation distances among the variables are still valid. 
It shows the similarities of variable changes across time. As in 
Fig. 2(d), we could find we could find PM10, O3 and NO2 
aggregate as a group while NO and SO2 are quite separated.   

Dynamic Time Warping Distance  

The correlation distance does not tolerate differences due to 
misalignment. For time-series variables, their patterns may not 
match at the exact same time stamps. Instead, some shifts may 
exist that will reduce the similarity between two variables. The 
dynamic time warping (DTW) distance [1] computes the 
optimal match between two sequences:  

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑓(𝑛, 𝑛) 

𝑓(𝑗, 𝑖) = |𝑥𝑗 − 𝑦𝑖| + 𝑚𝑖𝑛 {

𝑓(𝑗, 𝑖 − 1)

𝑓(𝑗 − 1, 𝑖)
𝑓(𝑗 − 1, 𝑖 − 1)

 

𝑓(0,0) = 0, 𝑓(𝑗, 0) = 𝑓(0, 𝑖) = ∞       (𝑖 = 1, … , 𝑛; 𝑗
= 1, … , 𝑛) 

(3.7) 

A s shown in Fig. 2(e), different from the correlation 
distance, with the DTW distance, the distances among different 
variables are quite even now. They do not have very specific 
close relation or vice versa.  

D. Similarity Visualization (MDS) and Pie Chart  

With distance metrics for both slices (Sec III-B) and 
variables (Sec III-C), it is easy to plot the similarity of the 

whole dataset using MDS as shown in Fig. 1(a). The scatter 
plot generated by MDS often brings massive points and causes 
clutter. This issue usually happens when plotting data 
similarities. Although the “by day” displays are able to express 
relations among relatively small window size as a close view 
of data, this also results in a massive point cloud which 
becomes confusing when the data volume is extremely high. In 
order to navigate data from a broader view with various time 
granularities, we also provide “by week”, “by month”, and “by 
season”. With this series of displays, users can explore 
relations hierarchically.       

Besides, we provide additional plots and interactions to 
ease the data exploration. Specifically, the Pie Chart can show 
the components of all variables. Some interactions can assist 
users to identify the aggregated points. For this purpose, we 
implemented three kinds of interactions – selection, filter and 
pick, shown in Fig.1. 

Since the MDS plot facilitates a similarity display but 
cannot organize data along the time axis, while the stream 
graph preserves the time sequence but is unable to explicitly 
show the similarity, connecting these two displays will benefit 
both aspects. Specifically, selection allows user to choose the 
time periods in the stream graph (used as a time reference) and 
the corresponding points in the similarity plot are highlighted 
simultaneously. Filter reverses this interaction – it offers users 
to draw a rectangle in the MDS plot that chooses only the 
points inside (meaning they are well correlated), and then 
highlights the corresponding slices in the stream graph. For 
instance, the highlighted slices confirm the fact that the 
beginning and end of the year are highly correlated. In 
addition, pick allows users to click on a point in the MDS plot 
to uncover a pie chart that displays the differences in terms of 
components among these time slices.  

IV. TIME INTERVAL SAMPLES (TIS) – BEHAVIOR 

This similarity analysis is based on the unit slices – either 
visualizing the similarities among the slices or computing the 
variables’ similarities based on the unit slices. With the static 
time point slice values, analysts cannot learn much about the 
evolving behavior in time intervals or windows – just encoding 
the time stamps as brightness is not enough. We would like to 
bin the unit data slices as different time-interval windows and 
then visualize the relation changes based on the windows. 

A. Data Window 

The streaming data can be divided into a series of intervals 
which we call data windows. Suppose we slice the original 
streaming data into m windows, thus the data matrix can be 
rewritten as: 

  𝐷𝑀 = [𝑊1, 𝑊2, … . , 𝑊𝑚]𝑇  (3.8) 

where each window W contains  ⌊𝑛/𝑚⌋ time slices. Then each 
variable Vi can be represented as:  

  𝑉𝑖 = [𝑊1𝑖 , 𝑊2𝑖 , … . , 𝑊𝑚𝑖] (3.9) 

To assess the behavior in a time interval, numerous 
methods have been proposed. Taking the mean of the data 
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slices in the same window is a common way to measure the 
behavior of that interval. This is similar to re-creating a sample 
point with the average value. However, using average to depict 
a behavior is not sufficient. Essentially, we forgo the higher 
resolution of the original data.  

B. Window Size 

In order to gather enough but not redundant information, it 
is necessary to obtain an appropriate window size, which 
essentially requires period detection. The multidimensional 
Fourier transform is a well suited to detect the period. It can 
transform the time series data into a frequency display. The 
estimated period can be obtained when it reaches the largest 
amplitude: 

𝛷(𝜔1, … , 𝜔𝑛) =
∑ … ∑ 𝜑(𝑑1 , … , 𝑑𝑛)𝑒−𝑖𝜔1𝑑1…−𝑖𝜑𝑛𝑑𝑛∞

𝑑𝑛=−∞
∞
𝑑1=−∞   

(3.10) 

where Φ is the Fourier transform function, ω means frequency 

and 𝜑  is the multidimensional discrete-domain function that 
generates our time series data. The detection result is shown in 
Fig. 3. We could observe the frequency with largest absolute 
amplitude is close to 0.04, so we estimate the window size as 
25. 

 

C. Similarity Function 

The similarity functions presented in section III.B and III.C 
are designed to analyze the similarity of time point slices. 
Beside correlation distance, we still need other metrics to 
evaluate window similarities. 

For the time-series variables, it is significant to capture self-
evolving features i.e. elements of the time-series data might be 
dependent on the values of previous elements. Auto regression 
distance [8] is one approach to recognize the linear intra-
dependency of specific variables. To compare the distance of 
two multidimensional variables X and Y, each variable is first 
divided into intervals with the width of a predefined window 
size w. The last element of each interval can be then 
represented as the linear regression of previous elements in the 
same interval:  

𝑥𝑡 = ∑ 𝐶𝑋𝑖 ∙ 𝑥𝑖

𝑡−1

𝑖=𝑡−2+1

+ 𝐴𝑋 + 𝐸𝑋𝑡,   𝑡 = 𝑤, 2𝑤, 3𝑤, … 

𝑦𝑡 = ∑ 𝐶𝑌𝑖 ∙ 𝑦𝑖

𝑡−1

𝑖=𝑡−𝑤+1

+ 𝐴𝑌 + 𝐸𝑌𝑡,    𝑡 = 𝑤, 2𝑤, 3𝑤, … 

(3.11) 

where CX and CY are the regression coefficients, AX and AY 
are the constant, and EX and EY are the errors. 

We then use the auto regression distance to calculate the 
Euclidean distance between the coefficients CX and CY to 
represent the distance between X and Y: 

  𝐷𝑖𝑠𝐴𝑅 = 𝐷𝑖𝑠𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐶𝑌, 𝐶𝑋) (3.12) 

Fig. 2(f) shows the visualization of variables with auto 
regression distance of window size 25 days. This distance 
produces a layout in which the time-evolving behaviors of the 
five variables are quite distinctive. They do not have similar 
evolving patterns. We could find SO2, NO2, NO and PM10 
forming a group while O3 is rather far away from this group. 

D. TIS Comparison in Line Chart 

The line chart is another common display to plot the values 
of sequences. As in Fig. 4, NO2 and PM10 in the first 100 days 
– a large period generates a long curve and so a smaller period 
is picked for demonstration purposes – are displayed. In the 
final interface, we allow users to restrict the window size (for 
now still 25), slide in this period and track the behavior 
between two variables.  

To visualize the similarity of these two variables for the 
first 100 days, the time interval windows are compared via 
both average values and original window correlations. As 
shown in Fig. 5, we observe the correlation is more close to the 
actual relation between NO2 and PM10 that they are close to 
each other first and then deviate far away when it is around 80 
days (the red peak in Fig. 4). 

E. Illustrative Transform Lines 

As we mentioned before, the similarity analysis can only 
show the static pairwise relations. The line charts could only 
show the value changes. To overcome these limitations, we 
devise a new approach called illustrative transform lines to 
combine those two together. 

For each time interval window, we first generate a 2D 
MDS map representing the relations of the variables inside that 
interval window. These 2D maps are treated as 2D planes 
stacked horizontally in 3D space. This stack is arranged by 
time and the data items plotted as colored points Pit in plane Si 
are connected to the corresponding points in the adjacent time 
planes Si-1 and Si+1 by straight lines. In other words, we connect 
the Pit (t=1,2,…,n) to form a line. This gives rise to a 3D 
display (see sketch in Fig. 5) where the changing relations 
across time planes can be visualized as changes in the pairwise 
line configurations. 

However, since conventional MDS randomizes the initial 
coordinates of the points and only preserves the relative (but 

Fig. 3. Time period detection using the multidimensional Fourier 

transform.  We find that the amplitude at 0.04 Hz is the largest 

Hence. the estimated window size is around 25. 
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Fig. 7. Comparison between different window size (a) global, (b) estimated 

and (c) local (window size=5). 

 

Fig. 4. Value-based comparison of NO2 and PM10 in the first 100 days. 

 

Fig. 5. Behavior comparison of NO2 and PM10 with average distance and 
correlation distance. 

 

Fig. 6. The sketch of illustrative transform lines formed by connecting the 

corresponding points in different 2D planes stacked horizontally in 3D 

space.  

not absolute) locations of the points in the final layout that can 
vary significantly across the layout planes. Hence, the paths 
created between adjacent planes could be incoherent. We fix 
this by setting the initial coordinates of the points in a plane to 
the layout coordinates of the previous plane. In this way, the 
inter-plane paths can show the relation changes quite well. A 
remaining problem is that the paths are in 3D which suffers 
from occlusion problems. So our final step is to map these 
paths into 2D via another MDS step. In this way the user can 
recognize any changes easily. As shown in Fig. 7, it is easy to 
trace the similarity changes among variables even when new 
data keeps streaming in. 

From Fig.7 (b) (same to Fig. 1f in Relation Display), we 
could observe PM10 and NO2 have close relation until Mar, 
then they divorce sharply, which is consistent with Fig.5. We 
could also find NO and NO2 maintain good relations during 
the year, this is because they are both nitrogen oxides. 

F. Window Settings 

In the last MDS projection step, we first compute the 
similarities of the different variables and then project these 
similarities. However, to gauge the similarities, taking TPS for 
example, just considering the attributes vector with the 
estimated window size is not enough. The streaming data is 
expected to keep changing based on different window size – 
just an selected one is limited. The different window sizes 
considering previous time slices will give different attention or 
weight to the previous and current time slices. We therefore 
provide a global and a local window for choosing different 
window sizes. 

Global Window  

The global window emphasizes the previous slices more 
and generates the changes over all time periods. This could 
present the overall changes during the whole period instead of 
local changes. We achieve this by appending the current time 
slice to the previous time slices from start time. Based on this 
window vector, we can lay out these attributes based on 
similarity. As we defined before, the values of Vi in the slice St 
is xit, thus the window vector Wit is: 

𝑊𝑖𝑡 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑡] (3.13) 

We use this method to our real data as in Fig. 6(a). 

Local Window 

The global window focuses on the global change over the 
whole time period. However, it is significant to observe the 
local change as well. Instead of creating the new attributes 
vector starting from the very beginning, we create a certain 
window size to control how many previous time slices to 
involve. Suppose the window size is l (l<estimated window 
size), then the new window vector Wit is, 
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Fig. 8. Dynamic display showing the change using sliding MDS on (a) 

2010/09/12 and (b) 2010/10/11 with window size 5. 

 

Fig. 9. Dynamic display showing the change using sliding MDS on (a) 
2010/09/12 and (b) 2010/10/11 with window size 5. 

 

 

𝑊𝑖𝑡 = [𝑥𝑖(𝑡−𝑙+1), 𝑥𝑖(𝑡−𝑙+2), … , 𝑥𝑖𝑡] (3.14) 

             
We can then run MDS based on the distance of the new 

attribute vectors. The local change (window size=5) of our data 
is shown in Fig. 7(c).  

With the global window size, estimated window size and 
local window size, analysts can now explore the time-series 
and track the behavior hierarchically.  With the global window 
size, analysts can gauge the stable relation over local mode. 
From the local window size, analysts could discover the detail 
change under the small window. The estimated window size is 
a good balance among them.  

G. Local Change Exploration 

The “Relation Display” just presented focuses on the 
overall relation changes. However, for the streaming analysis 
the local changes can also be of interest. For this we need to 
focus on the local changes of different pollutants in a certain 
time slice. We have developed a special display to show these 
changes. 

Weight Function 

The local changes are typically related to adjacent days (but 
this can be generalized). The exploration size selector (Fig. 1) 
allows users to set the period they would like to monitor. 
Additionally, a weight function allows users to set a preference 
for the days inside the window. We provide three types of 
weight functions: equal weights, previous focus, and later 
focus. “Equal weights” gives equal weights of the days in the 
windows. “Previous focus” gives higher weight for the 
previous days, and “later focus” emphasises the later days. 
Fig.1 shows the “later focus” weight function with a window 
size of 5. In this way, we balance the values of history and 
current ones. 

Sliding MDS 

The local (transient) changes can also be visualized via 
MDS, now by ways of a dynamic layout where the local 
changes of the points are visualized with streak lines. In order 
to see more details of local change during the time covered by 
a exploration window size, we also layout the change via MDS 
and draw a path to show the change from the past time stamps 
to the present. This helps to decrease the distortion of 1D MDS 
and improve the fidelity.  

The illustration is shown in Fig.8 (a), (b) and (c) as three 
time slices that are merged together to generate (d) as the new 
sliding MDS. The brightness indicates the temporal orders as 
before. In Fig. 9, we compared the results for two specific days 
– 2010/09/12 and 2010/10/11.  

On 2010/09/12, PM10, NO, NO2 and SO2 suddenly have 
very close relation, while O3 is opposite and moves away from 
this group (first it moves towards this group a little, then moves 
completely far way).  However, on 2010/10/11, we observe a 
different pattern – the five pollutants all move close to each 
other and their relations grow closer. This feature is difficult to 
see in the relation display. We summarize two reasons – a large 
window size ‘eats’ this small feature, and the 2D MDS plot is 
more accurate than 1D MDS. 

Compared with relation display on 2010/09/12 in Fig.1, we 
could find this 2D display shows more details of the local 
change. Furthermore, compared with the original values in the 
stream graph, we could find during the short period close to 
2010/09/12, all the pollutants’ values increase but just O3 
decreases. This observation confirms that our 2D layout is 
more accurate and helpful to reduce the error in the relation 
display. 

V. CASE STUDY 

In this section, we apply our interface to a Futures trading 
market to evaluate its performance and co-movements. We 
obtained a data set online with copper, crude oil, platinum, 



9 

 

 

Fig. 11. The values change of Gold and platinum (a) and crude oil and gas 

(b) in 2015. 

 

Fig. 12. Dynamic relation between copper, crude oil, platinum, gas and gold 

price in 2015. 

 

 

natural gas and gold prices of 2015. One price per weekday 
was sampled yielding a total of 245 samples for each variable 
(attribute) as shown in Fig. 10. From Fig. 10, we could observe 
the overall value trend of all variables. However, to identify the 
behavior into a sub time sequence is difficult.  

 
We observe that the behavior relations shown in Fig. 12 

among the different variables vary a great deal during 2015. 
Gold and platinum have relatively stable time relationships. 
They track each other which is called co-movement in 
economics. This makes sense since they are both precious 
metals. Fig. 11(a) shows the actual value curves of gold and 
platinum, where we can confirm this. Another interesting 
relationship is that formed by oil and gas (see again Fig. 12). 
They closely track each other until March, then disconnect, 
rejoin in April, disconnect again in May, briefly reconnect in 
August, and then completely disconnect. We can confirm this 
in the value plot of Fig, 11(b) if we go through the tedious 
effort and compare the value trends (not absolute values) in the 
corresponding 2-month time intervals. This again confirms the 
high utility of our new plots.  

VI. CONCLUSION 

We have presented a visual analytics tool that can visualize 
changing inter-attribute relations within time varying 
multivariate data. First, with users specifying the desired time 
slice granularity, the similarities of both the multivariate time 
samples and the variables can be visualized with different 
distance metrics in a 2D MDS layout. Second, we propose the 
notion of illustrative transform lines that can show changes 
across attributes and adjacent time slices using MDS projection 
respectively. Third, we offer the period detection to obtain the 
estimated window size and then build the weight function to 
balance the emphasis between previous and later time slices. 
This essentially aids users to detect and explore the local 
relation changes in more details. Finally, we embed all the 
displays mentioned above and develop a tool called 
(StreamVis)ND that can visualize the relations and behaviors in 
the multivariate streaming data by combining and linking 
different visualization schemas augmented with interactions. 
Future work will focus on user studies to refine the framework. 
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