
1

A Framework to Visualize Temporal Behavioral

Relationships in Streaming Multivariate Data

Shenghui Cheng, Klaus Mueller

Computer Science Department

Stony Brook University

Stony Brook, USA

{shecheng, mueller}@cs.stonybrook.edu

Wei Xu

Computational Science Initiative

Brookhaven National Laboratory

Upton, USA

xuw@bnl.gov

Abstract— Big Data analysis for scientific data is extremely

challenging due to the following features – high resolution,

extreme scale, high acquisition rate, multivariate data format

and aggregating in the streaming fashion. Therefore, a visual

analysis tool that can process, reduce, manipulate and display

extreme-scale data is critical for scientists to make the right

decision on-site and adjust their measurement strategies during

the experiment. The lack of these tools not only severely reduces

the scientific throughput, but also impairs our capability for

scientific discoveries. In this paper, we describe StreamVisND – an

interactive framework that provides several linked displays

designed to reveal multivariate temporal behavior patterns from

various perspectives. All of these displays generalize standard

visualization paradigms such as line graphs from time samples to

time intervals. As such the integral data type of our application is

the time interval which we represent as a vector of time samples.

Relationships of time intervals are expressed as similarities,

possibly warped over time, of pairs of time vectors. These

similarities can be among different variables at the same time

interval, or different time intervals of the same variable. The

former results in a line graph of streaming variables, while the

latter results in a new display we called illustrative transform

lines of time intervals over the variables. For both displays since

the comparative metric is now pairwise similarity, as opposed to

absolute value, we require an optimization algorithm, such as

multidimensional scaling to perform mapping into display

coordinates. Additional displays include a 2D embedding of

temporal snapshots of the variables, as well as a 2D embedding of

temporal relationships changes among the variables. We

demonstrate our system in an environmental pollution

diagnostics setting and have obtained encouraging results.

Keywords— information visualization; streaming data; high

dimensional data; time-series; embedding

I. INTRODUCTION

State-of-the-art scientific facilities, such as the NSLS-II,
generate high-resolution data streams at an aggregated rate of
Giga-bps. The enormous size of the data makes their
exploration, analysis, and summarization extremely
challenging; yet only with extensive analysis can deep
scientific insights be extracted. Currently available tools were
not designed with these massive datasets in mind. As a
consequence, analysis remains largely manual, burdening users
with tedious manipulation tasks that are both inconvenient and
error-prone. Therefore, an on-line visual analysis tool that can

process, manipulate and display extreme-scale data is critical
for them to make the right decision on-site and adjust their
measurement strategies during the experiment. The lack of
these tools not only severely reduces the scientific throughput,
but also impairs our capability for scientific discoveries. The
new framework we propose is designed to tackle these
challenges. Via data visualization and interactive visual
analytics it will provide targeted information to users in real
time, enabling timely assessment and decision-making as well
as more rapid discovery of subtle trends.

Beside scientific domain, streaming data have become
ubiquitous in recent years and arise in many aspects of our
daily lives. Examples are social networks, stock tickers,
pollution measurements, security feeds, economic trends, credit
card transactions, computer networks, science experiments, and
abundantly more. Streaming data embrace all of the 5V of big
data – volume, velocity, variety, veracity, and value. They are
real-time time-series data that afford real-time responses to the
measured phenomena. This provides unprecedented
opportunities for businesses, government, first responders, and
scientists to react to emerging trends. While some of these
responses can be automated, it is still desirable to also insert a
human into the loop, not only to prevent catastrophic
outcomes, but also to add critical human expertise and intuition
into the process. Whenever a human is involved in data science
applications, visualization and visual analytics can play a
critical role. They afford a highly effective gateway to a
human’s creative faculties and they also have a high propensity
of keeping the human expert engaged and alert. We describe
such an interface in this paper.

Pressing issues in streaming data are (1) the one-pass
constraint – the data need to be processed in-stream and not all
can be stored, (2) concept drift – the statistical properties of the
derived predictive model keep changing continuously in
unpredictable ways, and (3) concept evolution – new features
can appear in the predictive model which may either
supplement or outdate existing features. Additional
complexities arise from the fact that just like other (big) data,
streaming data is also often multivariate. There are many
economic factors – not just one – and there are also many
stocks, security metrics, environmental pollutants, and so on.
An effective visual analytics system must be able to deal with
all of these issues. The framework we propose, StreamVisND,
particularly addresses the multivariate nature of streaming data,

2

Fig. 1. Interface of our StreamVisND prototype. It consists of five parts – stream graph illustration, slice similarity plot, relation display, window transforms

demonstration (with weight function) and configuration control panel. The relation display highlights the relation change on 2010/09/12 in the blue
rectangle and exploration display traces the local change of variables at a smaller exploration size. The orange rectangle selects some time slices so that

they are highlighted in the stream graph with the slice bands.

but is also responsive to the other complexities mentioned
above.

Our system operates on subsequences of the time-series
data which we call time intervals. This allows us to compare
not just time values but time behaviors, which is aptly more
informative and salient in the context of time-variant data. We
represent each such time interval as a high-dimensional vector,
one for each variable, and then define a set of distance metrics
that can be employed to gauge similarity of behavior.
Essentially, our framework allows users to recognize temporal
co-movement of variables which can give important hints on
relationships that may exist among these variables. At the same
time, we can also compare the time behaviors of one or more
variables exhibited at different points of time, for example, to
map events of the past into the present for special analytics
tasks.

Our framework essentially generalizes the unit of measure
from time point sample (TPS) to time interval sample (TIS)
which is a vector quantity. We then define a set of similarity

metrics for TIS after which we use standard line plots displays
for visualization in the usual mode. It should be noted,
however, that these displays now visualize similarity of time
behavior as opposed to scalar values. As such, vertical
distances are now gauged by pairwise similarity and not value
differentials. While the latter requires simple ordering, the
former requires optimization which we perform using the stress
equation of multidimensional scaling (MDS).

The length of the time interval is obviously a critical
element of our framework. We describe several methods by
which good intervals for the TIS can be chosen. In addition, we
also describe several similarity functions by which pairs of TIS
can be compared.

Figure 1 shows an annotated screenshot of our prototype. In
the center is a Stream Graph by which users can select a certain
range of time slices for display in the Time Slice Similarity
Plot. A time slice is just a single multivariate time point. This
Time Slice Similarity Plot is an MDS plot in which more
similar time slices are laid out more closely, and time is

Relation Display

StreamGraph Display

3

mapped to color. We see that earlier time slices are more
similar since they clump together in the center. The Temporal
Attribute Relation Display is the TIS similarity line plot as
discussed above. Finally, the Dynamic Local Change Plot is a
temporal MDS display which visualizes the change of TIS
similarity over time.

Our system can be utilized in post-hoc batch mode and
within a streaming scenario. In the latter, when connected to a
real data stream, all displays would be constantly updated.
Reservoir-type sampling with temporal alignment could be
added, but we have not done this at the current time. Our
prototype interface can be regarded as a cockpit for streaming
data where the user can see different aspects of temporal
similarity at the same time.

Our paper is structured as follows. Section 2 presents
related work. Section 3 describes the time point sample
visualization and Section 4 presents our time interval
visualization in details. Section 5 illustrates a case study.
Section 6 ends with conclusions.

II. RELATED WORK

Multivariate streaming data possess both multivariate and
time series features. In the following we will discuss related
multivariate data displays, multivariate data space embeddings,
and then the extension to streaming data visualizations.

A. Multivariate Data Displays

Numerous multivariate data displays have been proposed
for multivariate data visualization. Parallel coordinates [13],
and its radial version, star coordinates [16], create axes either
vertically or radially, and then map the data as polylines. They
display the multivariate data and let users probe and capture
certain patterns. However, clutter is a serious problem when
the number of data items becomes large. Scatterplot matrices
[7], on the other hand, combine all the pairwise scatterplots as
sub-blocks and display the bivariate relations. Their growth
however, is polynomial in the number of dimensions. Radviz
[10], arranges the attributes as dimension anchors [11] that are
equally spaced around the circle and then map the data items
inside the circle via linear interpolation. However, the
overplotting of the points becomes a significant problem.
Generalized barycentric coordinates (GBC) [19] and its
improved version [1] can cause less overplotting by reducing
the layout error among the data and attributes. However, even
for the improved GBC plot, its error is still high [3]. This error
will only increase when the data becomes dynamic.

B. Multivariate Data Space Embeddings

Multivariate displays aim to display the multivariate data
and allow users to understand data patterns. However, these
displays cannot preserve the relations among the data items and
attributes well. Multivariate data space embeddings can map
the multivariate data space into a 2D layout while preserving
the similarities.

PCA [15] takes the plane formed by two eigenvectors and
projects the data into this plane. This linear mapping can
preserve the similarities among the data, but it causes much
distortion. MDS [17][21] takes all pairwise Euclidean distances

and optimizes the data layout to preserve these distances.
ISOMAP [23] and locally linear embedding [22] take neighbor
structures into consideration and visualize them in the 2D
plane. t-SNE [18] aims to extract clusters in the data. Our work
is inspired by these space embeddings and extends them for
streaming data visualization.

C. Streaming Data Visualization

The relations in the streaming data keep changing over
time. The stream graph and its cousin, Themeriver, are
techniques to visualize changing attributes. However, they
cannot convey varying relations.

To adapt multivariate data space embeddings into
streaming data visualization, Dwyer et al [1] mapped the data
slices onto a 2D layout and used the third dimension to
represent the time scale. This allows users to see the time axis
while observing multivariate relations. However, 3-
dimensional visualizations are difficult to explore. Steiger et al
[20] proposed to split the continuous time-series data into fixed
length segments and visualized them via self-organizing maps.
This can aid users in tracking certain patterns in the similarity
layout. However, they only consider the similarity of segments
but ignore the attributes. In addition, they can only visualize
discrete relations but users cannot assess the continuous
relation transformations. Our method [1] also subdivided
streams into slices, but it can display the segments and
attributes relations, discrete and continuous. Jäckle [14] et al.
presented (at the same time) a temporal MDS, which maps
each slice into 1D via MDS. However, the un-organized MDS
cannot arrange corresponding points well and makes it difficult
to track certain patterns. Our technique connects the
corresponding points from each slice, and generates a line to
see the evolving pattern.

In order to satisfy the goal of assessing relations among
data slices and attributes, and visualizing streaming data in a
more relationship-centric manner, we design an interface (see
Fig 1) called StreamVisND. It consists of five parts – stream
graph illustration, similarity plot, relation display, window
transforms demonstration (with weight function) and
configuration control panel.

III. TIME POINT SAMPLE (TPS) BASED VISUALIZATION

The multivariate streaming data typically contain numerous
(assume n) variables or attributes during a certain time period
with T time stamps. Then the multivariate data can be
presented as a set of time-series variables,

[𝑉1, 𝑉2, … , 𝑉𝑛] (3.1)

where Vi is the ith time-varying variable, attribute or
dimension.

At each time stamp, the streaming data generates a record,
which we call data slice. Each data slice S is an n-dimensional
vector,

𝑆𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛] (3.2)

where xij (j=1,2,…, n) is the ith (i=1,2,…,T) slice record in the
jth dimension.

4

Fig. 2. Data slices and variables visualization with different distance

metrics. (a) Euclidean distance (b) Correlation distance (c) SSIM

distance (d) Correlation distance (e) DTW distance (f) auto-regression
distance.

In this way, the streaming data forms a high dimensional
data matrix DM with T rows and n columns – the rows
represent the data slices (S) at different time stamps, while the
columns represent the attributes or variables (V):

𝐷𝑀 = [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑇1 ⋯ 𝑥𝑇𝑛

] (3.3)

Our test dataset in this paper is an air pollution data sample
of a city (A) in 2010. It contains the proportions of “SO2”,
“NO2”, “NO”, “PM10” and “O3” with 365 daily records.

Our first attempt to visualize these streaming data was to
simply visualize these time point slices with a stream graph
(Sec. III.A), slice similarity displays (Sec. III.B), variable
similarity displays (Sec. III.C) and additional visualization
techniques (Sec. III.D).

A. Stream Graph

The stream graph is a common visualization method for
streaming data. It represents the values of the attributes (called
themes) as vertical bars and joins them horizontally over time.
This yields a display of layers – one layer per attribute – with
time-varying cross-sections. While the stream graph presents
streaming data continuously, it is difficult for analysts to
assess, in an explicit way, the similarities of different time
slices and the changing relations of the attributes over time. We
have implemented this approach and plotted the pollution data
in Fig. 1. From Fig.1, we could observe that NO and NO2 have
high values at the beginning and ending of the year, but low
values in the middle, while O3 behaves complexly opposite.
The reason is simple - nitrogen oxide destroys O3. However,
with the stream graph, analysts can only observe the
continuous value change but it is difficult to tell the similarities
or differences among different slices or variables.

B. Slices Similarity Functions

Euclidean Distance

The Euclidean distance typically measures the vector
distance in Euclidean space. Suppose we have two slices
X=[x1, x2,…., xn] and Y=[y1, y2,…, yn]. The Euclidean distance
DisEuclidean between them is

𝐷𝑖𝑠𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 (3.4)

This distance computes the similarities based on the actual
values in the corresponding dimensions -- if two vectors have
similar values in each dimension, this distance will be small
and vice versa. This metric essentially provides the data
distributions based on its values as shown in Fig. 2(a). The
brightness is encoded according to the time stamps of the slices
(the same for the following sections). In this example, each
point represents one day. We observe that later days are similar
and mapped to the display center, while earlier days are more
dissimilar and are mapped to the periphery.

Correlation Distance

The Euclidean distance that acts on absolute value
similarity is not sufficient when two vectors have similar trends
but quite different values. To evaluate their similarity, we need

another distance metric – correlation distance, which
emphasizes the relative component similarity. This distance
could be calculated via Pearson correlation. In order to
consistently reflect the meaning of distance, we choose the 1-
correlation as the metric:

𝐷𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 1 −
𝐸[(𝑋−𝜇𝑋)(𝑌−𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (3.5)

where E is the expectation, 𝜇𝑋 and 𝜇𝑌are the means of X and Y
respectively, and 𝜎𝑌 and 𝜎𝑌 are the standard deviations of X
and Y respectively. As indicated in Fig. 2(b), we can find the
later slices on the bottom are quite scattered, which reveals that
their components in terms of combination ratios of attributes
are different. On the contrary, the slices labeled in the green
oval maintain tight relations. This stable time period might
imply, for instance, the specific pollution sources during that
time.

Structural Similarity Index

The Euclidean distance and correlation distance gauge the
similarity from “value” and “component” views, respectively.

5

However, they neglect the vector perceptual topology that
human observers are most sensitive to – the mean, contrast and
structure. To identify the vectors with similar topology, we
utilize a structure based distance metric - Structural Similarity
Index (SSIM) [12].

 𝐷𝑖𝑠𝑆𝑆𝐼𝑀 = [
2𝜇𝑋𝜇𝑌+𝑐1

𝜇𝑋
2 +𝜇𝑌

2+𝑐1
]𝛼 ∙ [

2𝜎𝑋𝜎𝑌+𝑐2

𝜎𝑋
2 +𝜎𝑌

2+𝑐2
]

𝛽

∙ [
𝜎𝑋𝑌+𝑐3

𝜎𝑋𝜎𝑌+𝑐3
]

𝑟

 (3.6)

where 𝜎𝑋𝑌 is the covariance of XY, 𝛼 , β and γ are the
parameters for mean, contrast and structure respectively. The
constants c1, c2, and c3 are typically small and prevent
numerical instabilities when the main terms are close to zero.
In this paper, we emphasize the structural aspect and make 𝛼
and β equal to 0. The result is shown in Fig. 2(c), where we
observe the structures of the slices are quite diverse. There is
no salient structural similarity depending on the slice
timestamp now. For instance, some later slices (circled in green)
have similar structures with the earlier days.

C. Variable Similarity Functions

As opposed to slice based comparison, we can process the
data “by column” i.e. treat each variable (attribute) as a time-
series vector and compare and plot their similarities. Some
metrics in the last section are still suitable such as computing
the correlation distance among the variables and visualizing
them by MDS. However, it no longer makes sense to compare
the Euclidean distance between two attributes due to unequal
measurements and normalization. New distance metrics are
more desirable for gauging the difference. Therefore, we
propose two different distance metrics for the variables.

Correlation Distance

The correlation distances among the variables are still valid.
It shows the similarities of variable changes across time. As in
Fig. 2(d), we could find we could find PM10, O3 and NO2
aggregate as a group while NO and SO2 are quite separated.

Dynamic Time Warping Distance

The correlation distance does not tolerate differences due to
misalignment. For time-series variables, their patterns may not
match at the exact same time stamps. Instead, some shifts may
exist that will reduce the similarity between two variables. The
dynamic time warping (DTW) distance [1] computes the
optimal match between two sequences:

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑓(𝑛, 𝑛)

𝑓(𝑗, 𝑖) = |𝑥𝑗 − 𝑦𝑖| + 𝑚𝑖𝑛 {

𝑓(𝑗, 𝑖 − 1)

𝑓(𝑗 − 1, 𝑖)
𝑓(𝑗 − 1, 𝑖 − 1)

𝑓(0,0) = 0, 𝑓(𝑗, 0) = 𝑓(0, 𝑖) = ∞ (𝑖 = 1, … , 𝑛; 𝑗
= 1, … , 𝑛)

(3.7)

A s shown in Fig. 2(e), different from the correlation
distance, with the DTW distance, the distances among different
variables are quite even now. They do not have very specific
close relation or vice versa.

D. Similarity Visualization (MDS) and Pie Chart

With distance metrics for both slices (Sec III-B) and
variables (Sec III-C), it is easy to plot the similarity of the

whole dataset using MDS as shown in Fig. 1(a). The scatter
plot generated by MDS often brings massive points and causes
clutter. This issue usually happens when plotting data
similarities. Although the “by day” displays are able to express
relations among relatively small window size as a close view
of data, this also results in a massive point cloud which
becomes confusing when the data volume is extremely high. In
order to navigate data from a broader view with various time
granularities, we also provide “by week”, “by month”, and “by
season”. With this series of displays, users can explore
relations hierarchically.

Besides, we provide additional plots and interactions to
ease the data exploration. Specifically, the Pie Chart can show
the components of all variables. Some interactions can assist
users to identify the aggregated points. For this purpose, we
implemented three kinds of interactions – selection, filter and
pick, shown in Fig.1.

Since the MDS plot facilitates a similarity display but
cannot organize data along the time axis, while the stream
graph preserves the time sequence but is unable to explicitly
show the similarity, connecting these two displays will benefit
both aspects. Specifically, selection allows user to choose the
time periods in the stream graph (used as a time reference) and
the corresponding points in the similarity plot are highlighted
simultaneously. Filter reverses this interaction – it offers users
to draw a rectangle in the MDS plot that chooses only the
points inside (meaning they are well correlated), and then
highlights the corresponding slices in the stream graph. For
instance, the highlighted slices confirm the fact that the
beginning and end of the year are highly correlated. In
addition, pick allows users to click on a point in the MDS plot
to uncover a pie chart that displays the differences in terms of
components among these time slices.

IV. TIME INTERVAL SAMPLES (TIS) – BEHAVIOR

This similarity analysis is based on the unit slices – either
visualizing the similarities among the slices or computing the
variables’ similarities based on the unit slices. With the static
time point slice values, analysts cannot learn much about the
evolving behavior in time intervals or windows – just encoding
the time stamps as brightness is not enough. We would like to
bin the unit data slices as different time-interval windows and
then visualize the relation changes based on the windows.

A. Data Window

The streaming data can be divided into a series of intervals
which we call data windows. Suppose we slice the original
streaming data into m windows, thus the data matrix can be
rewritten as:

 𝐷𝑀 = [𝑊1, 𝑊2, … . , 𝑊𝑚]𝑇 (3.8)

where each window W contains ⌊𝑛/𝑚⌋ time slices. Then each
variable Vi can be represented as:

 𝑉𝑖 = [𝑊1𝑖 , 𝑊2𝑖 , … . , 𝑊𝑚𝑖] (3.9)

To assess the behavior in a time interval, numerous
methods have been proposed. Taking the mean of the data

6

slices in the same window is a common way to measure the
behavior of that interval. This is similar to re-creating a sample
point with the average value. However, using average to depict
a behavior is not sufficient. Essentially, we forgo the higher
resolution of the original data.

B. Window Size

In order to gather enough but not redundant information, it
is necessary to obtain an appropriate window size, which
essentially requires period detection. The multidimensional
Fourier transform is a well suited to detect the period. It can
transform the time series data into a frequency display. The
estimated period can be obtained when it reaches the largest
amplitude:

𝛷(𝜔1, … , 𝜔𝑛) =
∑ … ∑ 𝜑(𝑑1 , … , 𝑑𝑛)𝑒−𝑖𝜔1𝑑1…−𝑖𝜑𝑛𝑑𝑛∞

𝑑𝑛=−∞
∞
𝑑1=−∞

(3.10)

where Φ is the Fourier transform function, ω means frequency

and 𝜑 is the multidimensional discrete-domain function that
generates our time series data. The detection result is shown in
Fig. 3. We could observe the frequency with largest absolute
amplitude is close to 0.04, so we estimate the window size as
25.

C. Similarity Function

The similarity functions presented in section III.B and III.C
are designed to analyze the similarity of time point slices.
Beside correlation distance, we still need other metrics to
evaluate window similarities.

For the time-series variables, it is significant to capture self-
evolving features i.e. elements of the time-series data might be
dependent on the values of previous elements. Auto regression
distance [8] is one approach to recognize the linear intra-
dependency of specific variables. To compare the distance of
two multidimensional variables X and Y, each variable is first
divided into intervals with the width of a predefined window
size w. The last element of each interval can be then
represented as the linear regression of previous elements in the
same interval:

𝑥𝑡 = ∑ 𝐶𝑋𝑖 ∙ 𝑥𝑖

𝑡−1

𝑖=𝑡−2+1

+ 𝐴𝑋 + 𝐸𝑋𝑡, 𝑡 = 𝑤, 2𝑤, 3𝑤, …

𝑦𝑡 = ∑ 𝐶𝑌𝑖 ∙ 𝑦𝑖

𝑡−1

𝑖=𝑡−𝑤+1

+ 𝐴𝑌 + 𝐸𝑌𝑡, 𝑡 = 𝑤, 2𝑤, 3𝑤, …

(3.11)

where CX and CY are the regression coefficients, AX and AY
are the constant, and EX and EY are the errors.

We then use the auto regression distance to calculate the
Euclidean distance between the coefficients CX and CY to
represent the distance between X and Y:

 𝐷𝑖𝑠𝐴𝑅 = 𝐷𝑖𝑠𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐶𝑌, 𝐶𝑋) (3.12)

Fig. 2(f) shows the visualization of variables with auto
regression distance of window size 25 days. This distance
produces a layout in which the time-evolving behaviors of the
five variables are quite distinctive. They do not have similar
evolving patterns. We could find SO2, NO2, NO and PM10
forming a group while O3 is rather far away from this group.

D. TIS Comparison in Line Chart

The line chart is another common display to plot the values
of sequences. As in Fig. 4, NO2 and PM10 in the first 100 days
– a large period generates a long curve and so a smaller period
is picked for demonstration purposes – are displayed. In the
final interface, we allow users to restrict the window size (for
now still 25), slide in this period and track the behavior
between two variables.

To visualize the similarity of these two variables for the
first 100 days, the time interval windows are compared via
both average values and original window correlations. As
shown in Fig. 5, we observe the correlation is more close to the
actual relation between NO2 and PM10 that they are close to
each other first and then deviate far away when it is around 80
days (the red peak in Fig. 4).

E. Illustrative Transform Lines

As we mentioned before, the similarity analysis can only
show the static pairwise relations. The line charts could only
show the value changes. To overcome these limitations, we
devise a new approach called illustrative transform lines to
combine those two together.

For each time interval window, we first generate a 2D
MDS map representing the relations of the variables inside that
interval window. These 2D maps are treated as 2D planes
stacked horizontally in 3D space. This stack is arranged by
time and the data items plotted as colored points Pit in plane Si
are connected to the corresponding points in the adjacent time
planes Si-1 and Si+1 by straight lines. In other words, we connect
the Pit (t=1,2,…,n) to form a line. This gives rise to a 3D
display (see sketch in Fig. 5) where the changing relations
across time planes can be visualized as changes in the pairwise
line configurations.

However, since conventional MDS randomizes the initial
coordinates of the points and only preserves the relative (but

Fig. 3. Time period detection using the multidimensional Fourier

transform. We find that the amplitude at 0.04 Hz is the largest

Hence. the estimated window size is around 25.

7

Fig. 7. Comparison between different window size (a) global, (b) estimated

and (c) local (window size=5).

Fig. 4. Value-based comparison of NO2 and PM10 in the first 100 days.

Fig. 5. Behavior comparison of NO2 and PM10 with average distance and
correlation distance.

Fig. 6. The sketch of illustrative transform lines formed by connecting the

corresponding points in different 2D planes stacked horizontally in 3D

space.

not absolute) locations of the points in the final layout that can
vary significantly across the layout planes. Hence, the paths
created between adjacent planes could be incoherent. We fix
this by setting the initial coordinates of the points in a plane to
the layout coordinates of the previous plane. In this way, the
inter-plane paths can show the relation changes quite well. A
remaining problem is that the paths are in 3D which suffers
from occlusion problems. So our final step is to map these
paths into 2D via another MDS step. In this way the user can
recognize any changes easily. As shown in Fig. 7, it is easy to
trace the similarity changes among variables even when new
data keeps streaming in.

From Fig.7 (b) (same to Fig. 1f in Relation Display), we
could observe PM10 and NO2 have close relation until Mar,
then they divorce sharply, which is consistent with Fig.5. We
could also find NO and NO2 maintain good relations during
the year, this is because they are both nitrogen oxides.

F. Window Settings

In the last MDS projection step, we first compute the
similarities of the different variables and then project these
similarities. However, to gauge the similarities, taking TPS for
example, just considering the attributes vector with the
estimated window size is not enough. The streaming data is
expected to keep changing based on different window size –
just an selected one is limited. The different window sizes
considering previous time slices will give different attention or
weight to the previous and current time slices. We therefore
provide a global and a local window for choosing different
window sizes.

Global Window

The global window emphasizes the previous slices more
and generates the changes over all time periods. This could
present the overall changes during the whole period instead of
local changes. We achieve this by appending the current time
slice to the previous time slices from start time. Based on this
window vector, we can lay out these attributes based on
similarity. As we defined before, the values of Vi in the slice St
is xit, thus the window vector Wit is:

𝑊𝑖𝑡 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑡] (3.13)

We use this method to our real data as in Fig. 6(a).

Local Window

The global window focuses on the global change over the
whole time period. However, it is significant to observe the
local change as well. Instead of creating the new attributes
vector starting from the very beginning, we create a certain
window size to control how many previous time slices to
involve. Suppose the window size is l (l<estimated window
size), then the new window vector Wit is,

8

Fig. 8. Dynamic display showing the change using sliding MDS on (a)

2010/09/12 and (b) 2010/10/11 with window size 5.

Fig. 9. Dynamic display showing the change using sliding MDS on (a)
2010/09/12 and (b) 2010/10/11 with window size 5.

𝑊𝑖𝑡 = [𝑥𝑖(𝑡−𝑙+1), 𝑥𝑖(𝑡−𝑙+2), … , 𝑥𝑖𝑡] (3.14)

We can then run MDS based on the distance of the new

attribute vectors. The local change (window size=5) of our data
is shown in Fig. 7(c).

With the global window size, estimated window size and
local window size, analysts can now explore the time-series
and track the behavior hierarchically. With the global window
size, analysts can gauge the stable relation over local mode.
From the local window size, analysts could discover the detail
change under the small window. The estimated window size is
a good balance among them.

G. Local Change Exploration

The “Relation Display” just presented focuses on the
overall relation changes. However, for the streaming analysis
the local changes can also be of interest. For this we need to
focus on the local changes of different pollutants in a certain
time slice. We have developed a special display to show these
changes.

Weight Function

The local changes are typically related to adjacent days (but
this can be generalized). The exploration size selector (Fig. 1)
allows users to set the period they would like to monitor.
Additionally, a weight function allows users to set a preference
for the days inside the window. We provide three types of
weight functions: equal weights, previous focus, and later
focus. “Equal weights” gives equal weights of the days in the
windows. “Previous focus” gives higher weight for the
previous days, and “later focus” emphasises the later days.
Fig.1 shows the “later focus” weight function with a window
size of 5. In this way, we balance the values of history and
current ones.

Sliding MDS

The local (transient) changes can also be visualized via
MDS, now by ways of a dynamic layout where the local
changes of the points are visualized with streak lines. In order
to see more details of local change during the time covered by
a exploration window size, we also layout the change via MDS
and draw a path to show the change from the past time stamps
to the present. This helps to decrease the distortion of 1D MDS
and improve the fidelity.

The illustration is shown in Fig.8 (a), (b) and (c) as three
time slices that are merged together to generate (d) as the new
sliding MDS. The brightness indicates the temporal orders as
before. In Fig. 9, we compared the results for two specific days
– 2010/09/12 and 2010/10/11.

On 2010/09/12, PM10, NO, NO2 and SO2 suddenly have
very close relation, while O3 is opposite and moves away from
this group (first it moves towards this group a little, then moves
completely far way). However, on 2010/10/11, we observe a
different pattern – the five pollutants all move close to each
other and their relations grow closer. This feature is difficult to
see in the relation display. We summarize two reasons – a large
window size ‘eats’ this small feature, and the 2D MDS plot is
more accurate than 1D MDS.

Compared with relation display on 2010/09/12 in Fig.1, we
could find this 2D display shows more details of the local
change. Furthermore, compared with the original values in the
stream graph, we could find during the short period close to
2010/09/12, all the pollutants’ values increase but just O3
decreases. This observation confirms that our 2D layout is
more accurate and helpful to reduce the error in the relation
display.

V. CASE STUDY

In this section, we apply our interface to a Futures trading
market to evaluate its performance and co-movements. We
obtained a data set online with copper, crude oil, platinum,

9

Fig. 11. The values change of Gold and platinum (a) and crude oil and gas

(b) in 2015.

Fig. 12. Dynamic relation between copper, crude oil, platinum, gas and gold

price in 2015.

natural gas and gold prices of 2015. One price per weekday
was sampled yielding a total of 245 samples for each variable
(attribute) as shown in Fig. 10. From Fig. 10, we could observe
the overall value trend of all variables. However, to identify the
behavior into a sub time sequence is difficult.

We observe that the behavior relations shown in Fig. 12

among the different variables vary a great deal during 2015.
Gold and platinum have relatively stable time relationships.
They track each other which is called co-movement in
economics. This makes sense since they are both precious
metals. Fig. 11(a) shows the actual value curves of gold and
platinum, where we can confirm this. Another interesting
relationship is that formed by oil and gas (see again Fig. 12).
They closely track each other until March, then disconnect,
rejoin in April, disconnect again in May, briefly reconnect in
August, and then completely disconnect. We can confirm this
in the value plot of Fig, 11(b) if we go through the tedious
effort and compare the value trends (not absolute values) in the
corresponding 2-month time intervals. This again confirms the
high utility of our new plots.

VI. CONCLUSION

We have presented a visual analytics tool that can visualize
changing inter-attribute relations within time varying
multivariate data. First, with users specifying the desired time
slice granularity, the similarities of both the multivariate time
samples and the variables can be visualized with different
distance metrics in a 2D MDS layout. Second, we propose the
notion of illustrative transform lines that can show changes
across attributes and adjacent time slices using MDS projection
respectively. Third, we offer the period detection to obtain the
estimated window size and then build the weight function to
balance the emphasis between previous and later time slices.
This essentially aids users to detect and explore the local
relation changes in more details. Finally, we embed all the
displays mentioned above and develop a tool called
(StreamVis)ND that can visualize the relations and behaviors in
the multivariate streaming data by combining and linking
different visualization schemas augmented with interactions.
Future work will focus on user studies to refine the framework.

ACKNOWLEDGMENT

This research was supported by NSF grant IIS 1117132,
and by the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the “ICT Consilience Creative
Program” supervised by the IITP (Institute for Information &

Communications Tech. Promotion)", and DOE LDRD grant
16-041 from Brookhaven National Laboratory.

REFERENCES

[1] D. J. Berndt, J. Clifford, “Using Dynamic Time Warping to Find
Patterns in Time Series”, KDD Workshop 1994: 359-370

[2] L. Byron, M. Wattenberg, “Stacked Graphs - Geometry & Aesthetics”,
IEEE Trans. Vis. Comput. Graph. 14(6): 1245-1252, 2008.

[3] S. Cheng, K. Mueller, “The Data Context Map: Fusing Data and
Attributes into a Unified Display”, IEEE Trans. Vis. Comput. Graph.
22(1): 121-130, 2016

[4] S. Cheng, K. Mueller, "Improving the Fidelity of Contextual Data
Layouts Using a Generalized Barycentric Coordinates Framework,"
Proc. Pacific Vis, pp. 295-302, 2015.

[5] S. Cheng, Y. Wang, D. Zhang, Z. Jiang and K. Mueller, “StreamVisND:
Visualizing Relationships in Streaming Multivariate Data”, Proc. IEEE
Visualization Conference, Chicago (USA), October, 2015.

[6] T. Dwyer and D. R. Gallagher, “Visualising changes in fund manager
holdings in two and a half-dimensions. Information Visualization,
3(4):227–244, 2004.

[7] J. Hartigan, "Printer graphics for clustering," Journal of Statistical
Computation and Simulation,4(3):187-213, 1975.

[8] A. Hatemi-J, “Multivariate tests for autocorrelation in the stable and
unstable VAR models, Economic Modelling 21 (4): 661–683

[9] S. Havre, E. Hetzler, L. Nowell: “ThemeRiver: Visualizing Theme
Changes over Time,” Proc. IEEE InfoVis, pp. 115-123, 2000.

[10] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, E. Stanley, "DNA Visual
and Analytic Data Mining", Proc. IEEE Visualization, pp. 437-441,
1997.

[11] P. Hoffman, G. Grinstein, D. Pinkney, “Dimensional anchors: a graphic
primitive for multidimensional multivariate information visualizations,”

Fig. 10. The line chart of copper, crude oil, platinum, gas and gold

price in 2015. The data is normalized for each attribute.

Copper Oil Platinum Gas Gold

Value

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

10

Proc. Workshop on New Paradigms in Information Visualization and
Manipulation, pp. 9-16, 1999.

[12] J. H. Lee, K. T. McDonnell, A. Zelenyuk, D. Imre, K. Mueller, “A
Structure-Based Distance Metric for High-Dimensional Space
Exploration with Multidimensional Scaling”, IEEE Trans. Vis. Comput.
Graph. 20(3): 351-364 (2014).

[13] A. Inselberg, B. Dimsdale, “Parallel Coordinates: A Tool for Visualizing
Multi-Dimensional Geometry,” Proc. IEEE Visualization, pp. 361-378,
1990.

[14] D. Jäckle, F. Fischer, T. Schreck, D. Keim, “Temporal MDS Plots for
Analysis of Multivariate Data”. IEEE Trans. Vis. Comput. Graph. 22(1):
141-150, 2016

[15] I. Jolliffe, “Principal Component Analysis,” Series: Springer Series in
Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 pp.28 illus. ISBN
978-0-387-95442-4.

[16] E. Kandogan, “Star Coordinates: A Multi-Dimensional Visualization
Technique with Uniform Treatment of Dimensions,” Proc. IEEE
Information Visualization, Late Breaking Topics, pp. 9-12, 2000.

[17] J. Kruskal. M. Wish, Multidimensional Scaling. Sage Publications,
1977.

[18] L. Maaten, G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, 9:2579–2605, 2008

[19] M. Meyer, A. Barr, H. Lee, M. Desbrun, “Generalized Barycentric
Coordinates on Irregular Polygons,” J. Graphics Tools, 7(1):13-22,
2002.

[20] M. Steiger, J. Bernard, S. Mittelstaedt, H. Tieke, D. Keim, T. May, J.
Kohlhammer, “Visual Analysis of Time-Series Similarities for Anomaly
Detection in Sensor Networks,” Comput. Graph. Forum 33(3): 401-410,
2014.

[21] J. Lee, K. McDonnell, A. Zelenyuk, D. Imre, K. Mueller, "A Structure-
Based Distance Metric for High-Dimensional Space Exploration with
Multi-Dimensional Scaling," IEEE Trans. on Visualization and
Computer Graphics, 20(3): 351-364, 2014.

[22] L. Saul , S. Roweis, “An Introduction to Locally Linear Embedding”
IJPRAI 01/2009; 23:1739-1752. DOI: 10.1142/S0218001409007752.

[23] J. Tenenbaum, V. de Silva, J. C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science 290,
2319–2323, 2000.

