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Abstract

By skeptics and undecided we refer to nodes in clustered social networks that

cannot be assigned easily to any of the clusters. Such nodes are typically found

either at the interface between clusters (the undecided) or at their boundaries

(the skeptics). Identifying these nodes is relevant in marketing applications

like voter targeting, because the persons represented by such nodes are often

more likely to be affected in marketing campaigns than nodes deeply within

clusters. So far this identification task is not as well studied as other network

analysis tasks like clustering, identifying central nodes, and detecting motifs.

We approach this task by deriving novel geometric features from the network

structure that naturally lend themselves to an interactive visual approach for

identifying interface and boundary nodes.
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Figure 1: The Twitter Polarized Crowd network is a typical example of a discussion net-
work on a political topic as it features two groups of users that form distinct discussion groups,
a liberal and a conservative group, that hardly interact with each other. For applications like
voter targeting the most interesting nodes in such a network are the nodes at the interface
between the two groups or nodes that are only loosely linked to one of the groups, because it
is more likely that they can be influenced by a political campaign.

1. Introduction

Customer targeting in marketing is an important problem is our social life.

Voter targeting is a representative instance of the customer targeting. It has

become an important tool at latest in the 2004 presidential election and is now

used heavily by both the Democrats as well as the Republicans. Marketing5

activities can be roughly divided into two groups, namely (1) identifying target

markets and market segments by means of market analysis, and (2) applying

methods for influencing customer behavior by providing product information

and/or product promotions. Of course marketing activities incur costs and thus

have to planned carefully. For instance, assuming that providing product in-10

formation to customers incurs costs, then it makes sense to address only those

customers or groups of customers that have a high enough chance to be con-

vinced of buying the advertised product or service. Hence, identifying such cus-

tomers or groups has become an important marketing activity. In our time and
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age, marketing techniques are so advanced that targeting individual customers15

instead of customer groups or segments has become technically and financially

feasible. Besides classical socio-demographic information social networks have

become an interesting data source that can be used for targeting customers.

Classifying the customers into undecided and skeptics makes sense in the

broader marketing context. It is useful, for instance, in saturated markets with20

high brand loyalty like the tobacco market. Smokers with high brand loyalty

are hard to reach by marketing campaigns. More likely to be reached by such

campaigns are undecided smokers who switch between two or three brands, and

skeptics who either smoke infrequently or mostly smoke cigarettes from the same

brand, but frequently also from other brands.25

Here we address the problem of identifying both marketing targets, the ‘un-

decided’ and the ‘skeptics’, from clustered social network data. A clustered net-

work exhibits several densely connected groups with significantly fewer edges

across the groups. Since both classes, the ‘undecided’ and the ‘skeptics’, are not

clear cut, the problem is a prime candidate for a visual analytics approach that30

allows to visually identify the questionable nodes in the network and check if

they are really members of the target classes. Throughout the rest of the paper

we want to adopt the more technical terms of interface nodes for the ‘undecided’

and boundary nodes or outliers for the ‘skeptics’. We describe and discuss a

set of geometric features that can be efficiently computed from similarity in-35

formation among nodes in a network. The features naturally lend themselves

to an interactive visual approach for identifying interface and boundary nodes.

We also describe how to derive similarity information from the incidence in-

formation in social networks and validate our approach and the accompanying

visual exploration tool on the Twitter Polarized Crowd network and the40

Facebook Ego Networks data sets. Figure 2 shows the different visual

explorations used in our work and their corresponding effects.

Organization of the paper. This paper is organized as follows: In the next section

we position our paper in the context of related work. In Sections 3.1 and 3.2
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Figure 2: The different visual explorations and their corresponding effects.

we describe the ideas underlying our new geometric features and show how they45

can be computed. We have implemented an interactive tool that supports the

feature based identification of interface and boundary nodes from structural

social network data. The tool and the rationale behind the implemented views

and interactions are described in Section 4. We apply our approach and tool in

two case studies that are described in Section 5, and conclude the paper with50

Section 6 that summarizes our results.

2. Related work

Pretorius, Purchase and Stasko [27] give a comprehensive overview of tasks

for multivariate network analysis. Abstractly speaking, a task is an analytic

activity on the combination of an entity and a property of that entity. Network55

entities are according to Lee et al. [18] nodes, edges (or links), paths of nodes

and edges, and whole networks. Network properties fall into two classes struc-

tural or topological properties and attributes associated with nodes and edges.

Hence also network analysis tasks can be distinguished as either structure-based,

or attribute-based. Here we want to focus only on structural properties and60

structure-based tasks. Connectivity tasks are a subset of structure-based tasks

that according to Pretorius et al. include among others clustering-tasks and

bridge-tasks that aim at finding bridges and articulation points in networks.

Here we also want to add boundary/outlier-tasks for finding nodes that are
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only loosely connected to clusters. Clustering, bridge- and boundary/outlier-65

tasks are all analytical identify tasks in the sense of Valiati et al. [1].

In this paper we address variants of clustering and certain bridge- and outlier-

tasks: Finding bridges or articulation points (aka cut vertices) is a classical topic

in network analysis and graph algorithms [12]. In our toy example of Section 4

(see Figure 4), Node 4 is an articulation point since his removal increases the70

number of connected components of the network (from one to two). In larger,

node clustered networks there are typically more nodes than just a single one

that have a significant number of connections in more than one cluster. These

nodes are at the interface of the clusters, but are no longer articulation points,

see for example Figure 1. Still, in terms of our intended application of identifying75

undecided consumers from network data we also want to detect these nodes.

Another difference to the classical work is that we address the problem not

only on primary information, i.e., just the adjacency matrix of the network, but

also on derived, secondary information, namely node similarities. Similarly for

boundary nodes and outliers. Based on primary information, boundary nodes80

and outliers are nodes with a small degree, i.e., a small number of incident

edges. Using also secondary information allows to detect also nodes that do

not necessarily have small degree, but are dissimilar to almost all the other

nodes. In a marketing context boundary nodes and outliers correspond mostly

to skeptics.85

A natural question to ask at this point is, why is an interactive visual ap-

proach necessary for identifying interface and boundary nodes, especially since

we are going to introduce automatically computable features that are meant to

identify these nodes. The simple answer is, like the notion of a cluster itself

also the notions of interface nodes and outliers are fuzzy. Hence fully automatic90

methods are not well suited for identifying them reliably. The real benefit of

these features is providing filters to be interactively used by the analyst for

shrinking the search space of all nodes to likely candidates of outliers and inter-

face nodes. The candidates can then be inspected further by the analyst.

For completeness, we also give here a brief overview of some tools and tech-95
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niques that have been designed for supporting structure based, multivariate

networks analysis tasks, although none of them supports our specific goal of

identifying interface and boundary nodes.

Nishikawa and Matter [25] list 28 efficiently computable network properties

most of which are of a spectral nature. They use these properties for embed-100

ding the nodes of a given network into 28-dimensional space and search for

group structures (clusters) in the resulting point cloud by standard clustering

techniques as well as by an interactive, visual inspection of randomly chosen

two-dimensional projections. Cheng et al. [11][10] apply visualization to show

the connection activities in torus network but is not for general network.105

Wong et al. [33] introduce another structural network property dubbed as

graph signatures. A signature of degree d is defined for each node as the vector

(n1, . . . , nd), where ni is the number of the nodes at distance i from the node.

Graph signatures can be computed efficiently by using breadth-first-search. The

signature vectors can be embedded into the plane by multi-dimensional scaling.110

Among some other tasks, graph features aid in finding articulation points, but

are in general not geared towards identifying outliers and interface nodes.

Wattenberg [32] introduces the PivotGraph tool for analyzing multivariate

networks. PivotGraph uses a simple grid-based approach to focus on the rela-

tionship between node attributes and connections. Its interaction approach is115

derived from an analogy with methods seen in spreadsheet pivot tables and in

online analytical processing (OLAP).

The multidimensional nature of multivariate network data suggests the use

of standard multidimensional visualization techniques like scatterplot matri-

ces (SPLOMs) and parallel coordinate plots (PCPs) for their analysis. The120

GraphDice tool [3] is adapting a SPLOM for the analysis of multivariate net-

work data. In an overview plot matrix one node-link plot for each pairwise

combination of attributes is shown, i.e., a scatter plot matrix of the attributes

together with plotted edges. The user can select one plot as the main plot

which is then enlarged. The GraphDice tool extends the ScatterDice tool [14]125

for navigating and exploring multidimensional tables and thus inherits most of
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its rich interaction capabilities.

Viau et al. [31] go even further in adapting standard multidimensional vi-

sualization techniques for analyzing multivariate network data. They introduce

the parallel scatterplot matrix (P-SPLOM) as a unification of scatter plot ma-130

trices (SPLOMs) and parallel coordinate plots (PCPs), together with smooth

transitions between them. Additionally, they propose to use hybrid network

layouts, i.e., a mix of attribute-driven layouts with force-directed and manual

layouts of the nodes, in order to provide more freedom and customizability to

the exploring user. Radviz [6] [9] and data context map [7] are also important135

techniques to visualize multidimensional data with the help of colorization [8]

or other enhancements [35], but both of them are not suitable for graph data.

Vehlow et al. [30] propose a neat method of visualizing overlapping commu-

nities and the fuzzyness of community assignment at different levels of details.

Similiar in purpose Wu et al. [34] describe an approach to interactive visual sum-140

mary of communities in large networks. They visually encode each community

as a polygon. Boundary nodes that are not clearly assigned to any commu-

nity are drawn individually in between the polygons. However, both, Wu and

Vehlow, require a priori community information for each node, e.g. from some

community detection algorithm. In our work we rely on no such information145

but introduce novel geometric node features based on the local neighborhood

of nodes. We then use a visual analytics approach to explore these features in

order to identify interface and boundary nodes.

3. Preliminary

Our work is based on the existing local neighborhood features and similarity150

matrices from networks. Therefore, we review them in this section.

3.1. Local neighborhood features

Here we motivate and describe the construction of geometric features for

identifying interface and boundary nodes in social networks that greatly improve
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on ad hoc features like node degrees. Keep in mind, though, that these features155

are not complete in the sense that they enable a fully automatic identification

of these nodes. They are intended to be used interactively as filters to reduce

the search space of all nodes in the network.

3.1.1. Input data

We consider some similarity matrix as our basic data structure. The sim-160

ilarity matrix is typically derived from heterogeneous data sources like socio-

demographic data, online activity data, social network data and many more.

This paper is not concerned with computing similarity scores from primary

data sources except for Section 3.2, where we derive a similarity matrix from

social network data. Deriving similarity measures is a standard machine learn-165

ing task. A common approach is turning data points into feature vectors and

then defining similarity as the dot product between feature vectors. The sim-

ilarity matrices that have been computed that way, i.e., every similarity score

is a dot product, are also called Gram matrices. Often Gram matrices are not

computed explicitly from feature vectors, but implicitly from a kernel function170

on the data [28]. In the latter case, the Gram matrix is also called a kernel

matrix. Gram matrices are not only symmetric, but also positive semi-definite.

For technical reasons that will become apparent later, here we also want to

assume that our similarity matrices are symmetric and positive semi-definite.

3.1.2. Deriving structure from similarity175

Machine learning can be used for deriving structure from data encoded in

a similarity matrix. A popular structure that can be computed from similarity

matrices are clusters, i.e., a partitioning the data into groups such that the

inner-group similarities are large while the intra-group similarities are low. In

a marketing context clustering is mostly referred to as market segmentation.180

Here we are interested in a secondary structure: A cluster is a fuzzy concept.

While the assignment of some of the data points to a cluster is obvious for a

human observer it might be quite dubious for others. Our goal is identifying
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data points whose cluster assignments are not so obvious. In the marketing

context these are the customers whose assignment to a market segment might185

be loose and that are thus prime candidates to be targeted in market campaigns

that aim at promoting a different segment, for instance smokers whose brand

loyalty is not very high or undecided voters in election campaigns.

Many machine learning techniques, for instance linear support vector ma-

chines [28] or k-means clustering, do not work on abstract similarity matrices190

but on Euclidean point clouds. To make these techniques amenable to sim-

ilarity matrices the latter are often transformed into Euclidean point clouds

such that the Euclidean distance after the transformation approximates the

(dis-)similarity well. This is also the approach that we want to pursue here,

namely deriving geometric features that support the identification of interface195

and boundary nodes in a clustered social network from an Euclidean embedding

of the nodes.

3.1.3. Spectral embedding

Spectral embedding is a popular technique for embedding similarity matrices

into Euclidean space such that the Euclidean distance of the points associated

with similar data points is small, and large for dissimilar nodes. Compared with

other mapping techniques, like MDS, spectral embedding can better present the

local manifold of the samples and thus better mine the clusters in data. In our

spectral embedding, the data are encoded now in a Euclidean point cloud instead

of a similarity matrix. So far we have considered the encoding

data → similarity matrix,

now we consider the encoding

data → similarity matrix → Euclidean point cloud.

Given a sample matrix X = [x1;x2; ...;xn], the spectral embedding firstly

constructs a neighbor-based similarity graph associated with a weighted adja-200
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cency matrix W . Each element wi,j in W is defined as follows.

wi,j =

e−
d2i,j

σ2 xi ∈ Nj or xj ∈ Ni,

0 otherwise,

where Ni is the set of the nearest neighbors of xi, di,j is the distance between

xi and xj , and σ is a free parameter. Then the features which well represent

the manifold of this graph can be extracted by the following problem:

µ = arg min
1Dµ=0

µTµ=1

1
2

∑
i,j (µi − µj)

2wi,j∑
i Diiµ2

i

,

where D is a diagonal matrix with the ith diagonal element as di,i =
∑

j wi,j .

With the normalization of µTµ = 1, the optimal solution µ to this problem is

the normalized eigenvector corresponding to the smallest nonzero eigenvalue of

D−1L, where L = D−W is a Laplacian matrix [29]. Although, this eigenvector205

can well represent a part of manifold structures in the above graph, we can not

well visualize the samples by only this eigenvector. As the suboptimal solutions

which correspond to a few small eigenvalues, some of the next normalized eigen-

vectors also contain useful partitioning information and thus can be used to our

visualization. After the spectral embedding, the point for each xi is defined210

as pi = (µi1, . . . , µid). The computation complexity for spectral embedding is

O(n3).

The point pi ∈ Rd can now be clustered by the k-means algorithm or any

other geometric clustering algorithm, or be classified by a linear support vector

machine, provided we also have class labels for the points.215

3.1.4. Using geometry beyond clustering

The key idea that we want to explore here is that the geometric information

encoded in a Euclidean point cloud should be useful for more than linear clas-

sification or clustering. We are especially interested in the local distribution of

the points within the point cloud. Our working assumption is that the points220
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at the boundaries or in between clusters are locally distributed differently than

points deep within clusters.

A first, simple measure for the local distribution of the points is the average

distance of a point to its k nearest neighbors. It turns out that this measure

does indeed provide useful information about interface and boundary nodes, but225

is far from a reliable, complete feature for identifying these nodes.

As a slightly more complex measure for the local distribution of the points,

that works much better than the simple average distance, we propose to fit an

ellipsoid to the k nearest neighbors of each of the points such that the vectors

from the points to their neighbors span the whole space Rd. Hence, it is neces-230

sary tho choose k ≥ d. The shape of the ellipsoids depends on the distribution

of the k-nearest neighbors and thus can serve as an approximation of the shape

of the neighborhood.
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Figure 3: The shape of a local neighborhood is approximated by the ellipsoid Ei that is
associated with the covariance matrix QiQ

⊤
i . The shape of the ellipsoid is determined by the

reciprocal eigenvalues of QiQ
⊤
i . Here are shown two examples: (1) a spherelike neighborhood,

where µ1 ≈ µ2, and (2) an elongated neighborhood, where µ1 ≫ µ2.

Fitting ellipsoids can be computed by a local principal component analysis

(PCA). Let

{pi1 , . . . , pik}

be the set of the k-nearest neighbors of pi, and define

qij = pij − pi, for j = 1, . . . , k.

The qij are organized in a k × n matrix Qi, whose columns are the vectors qij .
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Here n is the number of nodes. The covariance matrix QiQ
⊤
i is symmetric and

positive definite with rank k, and thus

Ei =
{
x ∈ Rk : x⊤QiQ

⊤
i x = 1

}
is an ellipsoid. The semi-principal axes of Ei are given by the eigenvectors of

QiQ
⊤
i and their lengths are given by reciprocals of the corresponding eigenval-

ues. Hence, if 0 < λi1 ≤ . . . ≤ λik are the eigenvalues of QiQ
⊤
i , then

0 < µik := 1/
√
λik ≤ . . . ≤ µi1 := 1/

√
λi1

are the lengths of the semi-principal axes of Ei. If all µij ’s are of the same mag-

nitude, then the ellipsoid is spherelike, while its prolated or oblated otherwise,235

see Figure 3.

3.1.5. Local neighborhood features

We want to use the local information that is encoded in the ellipsoids Ei

that are associated with the points pi for distinguishing points deeply within

clusters from points on their boundaries or in between clusters. The ellipsoids

are up to rotations completely determined by the eigenvalues λij , j = 1, . . . , k

or the square roots of their reciprocals µij . Hence, we assign the feature vector

(
µi1, . . . , µik

)
∈ Rk

to the point pi and thus to the i-th data point.

Of course, we can also cluster the feature vectors using for instance again

k-means clustering, but most likely with a different value for k than for clus-240

tering the points pi. Since the feature vectors are associated with the points

that themselves are associated with the data points, we have a second cluster-

ing of the data points. In a marketing context, the first clustering is based on

the Euclidean point representation of the customers and corresponds to a mar-

ket segmentation, while the second clustering is based on the feature vectors245
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and indicates the degree to which a customer belongs to its assigned market

segment. It is important to remember that the feature vectors can always be

complemented by other features, most notably the assignment of the items to a

cluster.

3.2. Similarity matrices from networks250

So far we have started our discussion with a similarity matrix as our basic

data structure. Here we show how to derive such a similarity matrix just from

the structure of a network. For that purpose, let G = (V,E) be a network,

whose vertex set is denoted as V and whose edge set is denoted as E. In a

social network an edge encodes some social interaction between the two incident255

nodes.

Let A be the adjacency matrix of the network, i.e., an n×n-matrix, if there

are |V | = n nodes, whose entry aij is 1 if {i, j} ∈ E, and 0 otherwise. Adjacency

matrices are by construction symmetric and could in principle serve as similarity

matrices, but in this case similarity would be just a binary feature that tells if260

two nodes socially interact, or not. Furthermore, A is not necessarily positive

semi-definite, though this is mostly a technical detail. A much better choice for

a similarity matrix is A2, i.e., the matrix product of the adjacency matrix with

itself. The interpretation here is that two nodes are more similar to each other,

if they have more neighbors in common, i.e., a larger number of nodes they both265

interact with. Also, A2 is symmetric and positive semi-definite. Hence, it is not

surprising that A2 is a well established similarity measure in social network

analysis, where it is known as structural equivalence [20]. Of course, there

are also other possibilities to define symmetric, positive semi-definite similarity

matrices from adjacency matrices, e.g., based on shortest paths, but A2 is an270

intuitive and convenient choice especially in the context of our geometric working

assumption that points at the boundaries or in between clusters are distributed

differently than points deep within clusters. Here the points correspond to the

nodes in the network that have been spectrally embedded into Euclidean space.

Let us check the working hypothesis on the following toy example.275
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Toy example. Our toy example is a network with ten nodes: two disjoint cliques

with four nodes each, one node connected to all nodes in both cliques, and one

node connected to two nodes in one clique. See Figure 4

1

0 2

3

4

5 7

8

9

6

Figure 4: This toy example features two cliques/clusters (Nodes 0,1,2,3, and 5,6,7,8, respec-
tively), one node on the interface between the two clusters (Node 4), and one node that is
loosely coupled to the second cluster (Node 9). The aim of our work is identifying the interface
and loosely coupled nodes.

The adjacency matrix A of our toy network is given as

A =



0 1 1 1 1 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0

1 1 1 1 0 1 1 1 1 0

0 0 0 0 1 0 1 1 1 0

0 0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 1 0 1 1

0 0 0 0 1 1 1 1 0 1

0 0 0 0 0 0 0 1 1 0
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and thus the corresponding similarity matrix A2 is given as

A2 =



4 3 3 3 3 1 1 1 1 0

3 4 3 3 3 1 1 1 1 0

3 3 4 3 3 1 1 1 1 0

3 3 3 4 3 1 1 1 1 0

3 3 3 3 8 3 3 3 3 2

1 1 1 1 3 4 3 3 3 2

1 1 1 1 3 3 4 3 3 2

1 1 1 1 3 3 3 5 4 1

1 1 1 1 3 3 3 4 5 1

0 0 0 0 2 2 2 1 1 2


We are simply using the top two eigenvectors of A2 for embedding the nodes of

the network into the plane. The embedding after adding some jitter is shown280

in Figure 5

0.1 0.2 0.3 0.4 0.5 0.6
−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0-3

9

4

5,6

7,8

Figure 5: Using the top two eigenvectors of A2 for embedding the nodes of the toy network.

As can be seen in Figure 5, the interface Node 4 and the boundary Node 9

can be clearly detected by the average distance to their nearest neighbors. Fur-

thermore, the fairly large degree of Node 4 renders it unlikely that this node

is a boundary node. Hence, we can easily classify Node 4 as an interface node285
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and Node 9 as a boundary node. In more complex networks, like the Twit-

ter Polarized Crowd network, see Figure 1, the classification is not that

easy anymore and having the more complex geometric features at our disposal

becomes beneficial.

4. Visual analytics framework290

We have implemented an interactive tool that allows the exploration of pri-

mary features (clusters, market segments) and secondary features (neighbor-

hood shape) in network data. The tool supports four fully linked views that we

describe in the following.

4.1. Views295

The four views of our tool (Network Layout, Neighborhood Distribution

Overview, Feature Explorer, and Shape Explorer) are summarized in Figure 6.

We should point out here that the contribution of this paper is not providing

novel visualizations, but demonstrating that well established, standard visual-

ization techniques in conjunction with our geometric features can be an effective300

means for reaching our goal of identifying interface and boundary nodes in clus-

tered social networks.

Network Layout View. Many different graph layout strategies are known that

allow to represent a network as a node-link diagram in the plane, where nodes

are typically represented as disks and links as straight or curved line segments,305

see for example [2] for an overview of different layout strategies and goals. The

Network Layout view of our tool features a stress minimization layout that aims

at preserving the node similarity, i.e., tries to place similar nodes close to each

other. Additionally, we have experimented with a force directed layout [2] that

aims at avoiding visual clutter and edge crossings, and a backbone layout [26]310

that has been designed for separating different communities in social networks.

It turned out that the latter two layouts do not support the identification of

boundary and interface nodes well, see Figure 14 (a). Always keep in mind that
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Figure 6: The four views implemented in our tool for identifying interface and boundary
nodes: Network Layout, Neighborhood Distribution Overview, Feature Explorer, and Shape
Explorer

this is the only view that does not show the feature vectors, but the original

network.315

Neighborhood Distribution Overview View. Neighborhood distribution overview

is used to show the clusters and outliers in the high dimensional data. The en-

tirety of local neighborhood feature vectors, see Section 3.1, that have been

computed for the nodes of a given network can be considered a high dimen-

sional point cloud. Numerous methods have been proposed for visualizing high320

dimensional point clouds, among them scatter plot matrices [15], parallel coor-

dinates [16], and multidimensional scaling (MDS) [4] that are mentioned here

as representatives for wholes classes of techniques that even can be combined.

Since MDS allows to quickly gauge the structure, e.g., clusters and outliers, of

a high dimensional data set we choose it as our primary view for visualizing the325

local neighborhood features.

Feature Explorer View. While MDS plots work well for detecting clusters and

outliers they cannot explain which dimensions of the feature vectors are respon-
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sible for the observed characteristics. However, feature explorer allows such

insights by parallel coordinates that map high dimensional points to polylines.330

Hence, we chose to add it as an alternative view for visualizing the local feature

vectors, i.e., the eigenvalues of the local covariance matrices. It should be noted

that we scale the eigenvalues shown in this view such that the largest among

the i-th eigenvalues in the data set is always set to 1 and the smallest is set to

0. Scaling the eigenvalues makes it easier to tell apart different clusters of the335

feature vectors and allows for an easier interaction, namely restricting the range

of some of the eigenvalues for filtering, see Section 4.2. A drawback of scaling

the eigenvalues is that the parallel coordinates view does not convey the shape

of the local neighborhood properly.

Shape Explorer View. Neither the MDS plot nor the parallel coordinates plot340

allows to assess the shape of the local neighborhood directly. For that purpose,

we add a shape explorer as a star plot view [17] to our tool that features a

star plot of the local neighborhood features. Star plots immediately convey

the shape of a local neighborhood, i.e., the fitted ellipsoid, fairly well. At one

glance one can tell if the ellipsoid is more rounded or elongated. Remember that345

elongated ellipsoids hint at the interface or boundary nodes in the network, see

also Figure 7.

The star plots in our tool are mostly used for groups of feature vectors and

not for individual feature vectors, i.e., for selections or clusters, whose average

is then shown in a star plot. For instance, the star plot shown in Figure 6350

represents the average shape for all nodes in the network.

4.2. Interactions

Interactions are used to configure the visualizations and allow to explore the

different neighborhood features for identifying interface and boundary nodes.

The implemented interactions include the selection of nodes, projections onto a355

subset of the dimensions of the feature vectors, and filtering by these dimensions

and other features like node degrees and the average distance to the k nearest
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Figure 7: The selection interaction between the Network Layout view and the Shape Explorer
view for two different selections in the Network Layout view. Apparently different groups of
nodes in the Network Layout view have different local neighborhood shape characteristics as
witnessed in the red star plots. Note that the average shape of the nodes selected on the left
is much closer to the average shape (blue) than for the nodes selected on the right.

neighbors. Additionally, feature vectors can be clustered, and colored groups

can be created from selections.

Selection. Nodes of the network can be selected using rectangular range queries360

either in the Network Layout view or in the Distribution Overview view. The

selection also becomes active in the other views (brushing). For example in

Figure 8 we show the link between a selection in the Distribution Overview

view with all the other views, and in Figure 7 we demonstrate the link between

a selection in the Network Layout view and the Shape Explorer view. To support365

semantic analysis a user can also read off the label of a node, if available, by

hovering over it with the mouse.

Filtering. Filtering just means restricting the range of the nodes’ attributes.

In our case the attributes are node degree, average distance to the nearest
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Figure 8: The selection interaction between the Distribution Overview view and all the other
views. Points selected in the Distribution Overview view are highlighted in the Network
Layout view and the Feature Explorer view. The Shape Explorer view features star plots for
all nodes (blue) and the selected nodes (red).

neighbors, and the dimensions of the feature vectors, where every dimension is370

considered as an attribute of its own. Filtering the feature vector dimensions

is enabled in our tool in the parallel coordinates plot of the Feature Explorer

view, where one can select a range of values for the corresponding eigenvalues.

Projection. A projection is used for removing some of the dimensions from the

local feature vectors. This interaction is possible in the Feature Explorer view375

and also affects the Distribution Overview view and the Shape Explorer view.

It does not affect the Network Layout view since this view does not depend on

the local feature vectors.

Clustering. For obtaining a first impression of a clustering structure within the

distribution of the local feature vectors we provide the user with the choice of380

automatically clustering the feature vectors first. The nodes of the graph and the

points in the MDS and parallel coordinates plots are then colored accordingly,

see for example Figure 11 (b).
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Our tool currently supports k-means clustering [19], where the value of k

can be set interactively by the user. Typically, small values for k work well and385

one of the automatically computed clusters of the feature vectors corresponds

already fairly well to the interface and boundary nodes. It is important to note,

that the clustering of the feature vectors is different from the classic spectral

clustering [21], where a geometric clustering algorithm is applied directly to a

spectral embedding of the nodes of the network and not to secondary informa-390

tion like the feature vectors that we are using here.

5. Case Studies

We demonstrate our approach for finding interface and boundary nodes on

the Twitter Polarized Crowd network and the Facebook Ego Net-

works data set.395

For the spectral embedding of the networks into Euclidean space we used

diffusion maps for the similarity matrices instead of directly using their eigen-

vectors. Diffusion maps have been suggested by Nadler et al. [24] who showed

that the Euclidean distance of the embedded nodes has a nice interpretation

as a diffusion distance in the network, if the embedding dimension equals the400

number of nodes in the network. They also prove that this diffusion distance is

well approximated even for much smaller embedding dimensions.

The embedding dimension should be chosen in conjunction with the number

k of nearest neighbors that are used for computing the neighborhood feature

vectors. A default choice, that always gave good results also for other networks405

(for instance the Twitter Broadcast network that we used in all figures in

the previous section), is choosing the embedding dimension as k/2. Note that

the number of neighbors must always be larger than the embedding dimension.

The choice of the number of neighbors depends on the size of the network.

Typically, this number should be smaller for smaller networks. In our case410

studies, any number between ten and twenty worked well in the sense that the

results were not sensitive to the choice. Still, in our tool we provide the user
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Figure 10: Three user types in the Twitter Polarized Crowd network. From left to right:
undecided users (interface nodes), skeptics (boundary nodes), and stalwarts. Identifying these
types is hard to come by using automatic techniques like clustering feature vectors, but requires
the interactive features of our tool. The interactions here are straightforward selections either
in the MDS or in the network layout view.

with the option to change the number of neighbors as well as the embedding

dimension in a predefined range. For keeping the tool interactive, the results

for the possible choices have to be precomputed.415

5.1. Twitter Polarized Crowd

Figure 9: The Twitter Polarized Crowd network features two large and dense groups,
liberals and conservatives, that have little connection to each other. They are mostly ignoring
each other. Here shown is a stress minimization network layout.

The Twitter Polarized Crowd network has been introduced and dis-

cussed by Smith et al. [22] in their analysis of political conversations on Twitter.

This network is a typical example of a discussion network on a divisive political

topic as it features two groups of users that form distinct discussion groups,420

a liberal and a conservative group, that hardly interact with each other and
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use different resources of information. Hence the tagging of this network as

polarized crowds.

The network can also serve as an example for an increasing trend that people

tend to surround themselves with other people who generally think alike. Thus,425

our similarity matrix A2 (the squared adjacency matrix of the network) is a

good measure for the polarization in a network, because nodes within clusters

with respect to this similarity measure are hardly interacting with nodes outside

the cluster by definition.

The Twitter Polarized Crowd network has 640 nodes and 7, 988 links,430

where nodes represent twitter users who used the hashtag My2K. This hashtag

was promoted by the White House in 2012. It refers to an estimated $2,200 tax

increase for middle class families if the Congress would not extend the Bush-era

tax rates for families making $250,000 or less per year. A link is present in the

network if a user replies-to, mentions or follows another user.435

It can be seen in Figure 9 that the Twitter Polarized Crowd network

clearly separates into two clusters and some outliers. Clustering algorithms for

graphs, for instance Markov clustering [13], easily detect these clusters, but are

not capable of detecting interface and boundary nodes. Also, neither centrality

scores, node degrees, nor the average distance to the k nearest neighbors in440

the spectral embedding of the network are particularly well suited features for

identifying interface and boundary nodes, see Figures 11 (a) and 12 (left).

Identifying interface and boundary nodes. Applying a 3-means clustering to the

neighborhood feature vectors, see Figure 11 (b), reveals a third cluster that

roughly corresponds to interface and boundary nodes in a stress minimization445

layout of the network.

It should be pointed out here that it is remarkable that the first two clusters

in the 3-means clustering correspond to the two groups, conservatives and lib-

erals. The clustering has been computed on the neighborhood feature vectors

and not on the spectral embedding of the network. That is, the two groups can450

also be distinguished by their neighborhood feature vectors which indicates a
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(a) From left to right: Markov clustering, average distance to the k nearest neighbors, and
node degree. Only the average distance aids in identifying interface and boundary nodes
to some extent.

(b) An automatic 3-means clustering applied to the feature vectors shown directly in the network
(left) and in a MDS plot of the feature vectors (right). Two clusters correspond to the two
political groups, while a third cluster corresponds to interface and boundary nodes. The different
clusters are labeled by the different colors.

Figure 11: The Clustering analysis on Twitter Polarized Crowd Network.

different communication behavior within each of the two groups. It is important

to note that this difference in the neighborhood structure cannot be seen from

the graph layout in Figure 9 (the same holds true also for other graph layouts),

or from other means like centrality scores, see Figure 12 (left).455

Automatically clustering the neighborhood feature vectors already gives a

good first impression on the location of the interface and boundary nodes, but

without distinguishing between them. An interactive exploration reveals more
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detail. By selecting feature vectors in the Neighborhood Distribution Overview

view or by selecting nodes in the Network Layout view one can easily distinguish460

three user types, see Figure 10:

Undecided (and nonpolitical) users: Members of this user type neither belong

to the liberal nor to the conservative cluster. Their neighborhood structure is

elongated since they have liberal as well as conservative users as their nearest

neighbors. They are at the interface between the conservative and the liberal465

group. Typical node clustering algorithms are not able to detect this user type

and put its members either into the liberal or into the conservative cluster, e.g.

in Figure 10 (left) which shows a typical result of a node clustering algorithm.

Nonpolitical users: Members of this user type exhibit a similar neighbor-

hood structure as the undecided users since their neighborhood structure is also470

elongated. The difference to the undecided users is that the nearest neighbors

for members of this user type are either from the liberal or from the conservative

cluster, but not from both, see Figure 10 (middle). The corresponding nodes

are boundary nodes.

Stalwarts: Members of this user type have a spherical neighborhood struc-475

ture, see Figure 10 (right). Their nearest neighbors belong to the same cluster,

either liberal or conservative, as the members themselves. The members of this

user type are typically also fairly central within their clusters, see Figure 11

(a) (right) for degree centrality scores. The corresponding nodes are neither

interface nor boundary nodes.480

A closer look. For providing ground truth we looked up some of the Twitter

accounts that are present in the network (see Figure 12) and mostly have a high

centrality score. It is important to note that the stress minimization layout only

provides some indication, but not a ground truth for the classification of the

nodes.485

1. bodiesoflight is an esoteric Twitter account that essentially does not deal

with political topics, and hermanos is a user who follows 429 other Twitter

accounts that basically all deal with pop culture. Hence, it makes sense that
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bodiesoflight

Politics_PR

tironsi75fromNJ

TheTeaParty_net

hermanos
DailyCaller

NHLabor_news

Figure 12: Highlighted are nodes deeply within the conservative and the liberal groups, nodes
at the interface between the two groups, and one boundary node. See the main text for more
information about these nodes. On the left nodes are colored according to their betweenness
centrality score [5], and on the right they are colored according to the automatic 3-means
clustering of the feature vectors.

the corresponding nodes are at the boundary or at the interface, respectively.

2. Politics PR is the Twitter account of R. Saddler who claims on Nation-490

builder.com to be a “social media guy dipping my toe into the liberal side of

politics”. Still, its node has also many links into the conservative group, which

justifies its location at the interface.

3. DailyCaller is the Twitter account of the political news website with the

same name that has been founded by Tucker Carlson, a political news corre-495

spondent for Fox News, and Neil Patel, the former chief policy advisor to Vice

President Cheney. The Daily Caller, who claims to reach over 20 million unique

readers each month, is not as partisan as the biographies of its founders might

suggest. The account has also many links into the liberal group. Hence, it

makes sense that this node is classified as interface node.500

4. tironsi75fromNJ claims on his Twitter account “Bernie Forever”. Hence,

it seems not justified that this node is considered a boundary node as suggested

by our filter and its location in the network layout. Note though that the

data set has been collected more than three years ago, and the user’s political

opinions could have become more articulated since.505
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5. NHLabor news is the Twitter account of the NH LABOR NEWS blog

that is maintained by a group of “proud Union members” from multiple different

professions across New Hampshire. Hence, it is obviously correctly located

deeply within the liberal group.

6. TheTeaParty net is obviously correctly located deeply within the conser-510

vative group.

From our inspection of Twitter accounts present in the Twitter Polar-

ized Crowd network we conclude that boundary nodes typically correspond

to nonpolitical Twitter accounts, whereas interface nodes either correspond to

nonpolitical accounts or to accounts with a high centrality score and a signifi-515

cant number of followers from both groups, the liberals and the conservatives.

Hence, in this network some of the boundary and interface nodes share the

same semantics (user type), and need other means like centrality scores to be

distinguished.

5.2. Facebook Ego Networks520

Figure 13: The Facebook Ego Networks data set features the ego networks of ten Stanford
students (red nodes) within Facebook. Here again a stress minimization network layout is
shown.

27



These days it is fairly common for consumers to befriend brands that help

them to meet a need or to satisfy a desire. Unfortunately, social network data

that are clustered by brand loyalty (think of Nike vs. Adidas) are not available

in the public domain. In our second use case we used instead the Facebook

Ego Networks data set that has been collected by McAuley and Lescovic [23]525

for validating an algorithm that automatically detects social circles, like sports

teams or relatives, in peoples personal social networks. This network features

several densely connected groups that are only loosely coupled and thus also ex-

hibits interface and boundary nodes that we would like to identify. Note though

that circles are different from traditional clusters as the membership can be530

hierarchical. An example for such a hierarchical structure is the circle of college

friends that contains the friends from the computer science department which

in turn contains the friends under the same advisor. For collecting the data,

McAuley and Leskovec have developed a Facebook app that ten participants

(Stanford graduate students) used to label the circles in their ego networks.535

The whole network has 4, 039 nodes and 88, 234 links.

Identifying interface and boundary nodes. Applying a 2-means clustering to the

neighborhood feature vectors, see Figure 14 (b) (middle), reveals several loosely

coupled groups of nodes (all colored green) and nodes (colored orange) that are

mostly found at the interface between the groups in the stress minimization540

layout. Notably, the groups, some of which can be distinguished already fairly

easily from the network layout in Figure 13, do not coincide with the ten personal

networks as there are more than ten groups. Markov clustering [13] does a

remarkably good job of recovering the ten personal networks, see Figure 14 (b)

(left), but does not help in discovering boundary and interface nodes.545

Star plots for the two clusters in the set of local feature vectors show that

the corresponding neighborhoods are indeed fairly different. The neighborhoods

that correspond to nodes within the prominent groups of the network are sig-

nificantly more spherical than the neighborhoods of the boundary and interface

nodes, see Figure 14 (b) (right), which confirms our intuition behind the con-550

28



(a) An automatic 2-means clustering applied to the feature vectors shown directly in the network
for different network layouts, namely stress minimization (left), spring embedding (middle), and
backbone layout (right). Obviously, boundary and interface nodes are basically impossible to
identify in the last two layouts (which holds also true for other networks).

(b) Markov node clustering (left). 2-means clustering of the local feature vectors shown in
an MDS plot of these vectors (middle). Star plots that summarize the geometry of the local
neighborhood structure for the two clusters (right).

Figure 14: The Clustering analysis on Facebook Ego Networks.

struction of the geometric features.

As for the Twitter Polarized Crowd network, automatically clustering

the feature vectors gives together with the stress minimization layout already a

good first impression on the location of the interface and boundary nodes, but

an interactive exploration of these features brings out finer details, see Figure 15.555

A closer look at one of the ego networks. One of the ego networks, see Figure 16

(left), shows a somewhat diffuse substructure in terms of our features. Using

our features and tool iteratively on subnetworks enables a closer inspection of

such substructures. Relayouting the subnetwork alone, see Figure 16 (right),560

reveals at least four node clusters A, B, C and D within the subnetwork. Many
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Figure 15: Interactively filtering boundary and interface nodes through the Feature Explorer
view. Here only very elongated neighborhoods have been selected as suggested by the apparent
clustering structure in the parallel coordinates plot.

of the nodes that have been selected or identified in the 2-means clustering of

the feature vectors as boundary and interface nodes are indeed located between

these clusters after relayouting the subnetwork. Note that after relayouting

almost all of the automatically labeled interface nodes in cluster B have indeed565

been moved to the interface between the clusters, which demonstrates that it

can be difficult to identify interface and boundary nodes only from the global

layout, i.e., one would have missed some interface nodes by relying only on

the network layout. Note also that cluster D is at the interface to another ego

network.570

6. Conclusions

We have addressed the problem of identifying interface and boundary nodes

in clustered social networks. For instance, clusters might correspond to political

parties in political discussion networks, or to subnetworks of social networks

that are clustered according to brand loyalty. A common property of boundary575
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B

D

CB

A D

Figure 16: A closer look at one of the ego networks. Original layout on the left, and an
individual stress minimization layout for the same subnetwork on the right. The coloring is
according to the filtering from Figure 15.

and interface nodes is that they do not belong firmly to any of the clusters.

Persons represented by these nodes are thus interesting targets in marketing

campaigns that either aim at growing existing clusters or at establishing new

clusters (brands).

For the purpose of identifying interface and boundary nodes we have derived580

geometric features from local network structures. The true potential of these

features can only be unlocked by using visual analytics techniques for the anal-

ysis of high-dimensional Euclidean point clouds together with classical graph

layout strategies. Hence, we have combined several visual techniques and auto-

matic analysis tools like k-means clustering for the exploration of the geometric585

neighborhood features in a fully linked tool. We have used the tool in two case

studies, where the features in conjunction with our interactive approach turned

out to be effective in identifying interface and boundary nodes.
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