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ABSTRACT Torus networks are an attractive topology in supercomputing, balancing the tradeoff between
network diameter and hardware costs. The nodes in a torus network are connected in a k-dimensional
wrap-around mesh where each node has 2k neighbors. Effectively utilizing these networks can significantly
decrease parallel communication overhead and in turn the time necessary to run large parallel scientific and
data analysis applications. The potential gains are considerable —5-D torus networks are used in the majority
of the top 10 machines in the November 2017 Graph 500 list. However, the multi-dimensionality of these
networks makes it difficult for analysts to diagnose ill-formed communication patterns and poor network
utilization since human spatial understanding is by and large limited to 3-Ds. We propose a method based
on a space-filling Hilbert curve to linearize and embed the network into a ring structure, visualizing the data
traffic as flowlines in the ring interior. We compare our method with traditional 2-D embedding techniques
designed for high-dimensional data, such as MDS and RadViz, and show that they are inferior to ours in this
application. As a demonstration of our approach, we visualize the data flow of a massively parallel scientific

code on a 5-D torus network.

INDEX TERMS Torus, supercomputing, networks, multi-dimensional data.

I. INTRODUCTION

Supercomputing has become an indispensable tool in the big
data era. The scale of these machines permits high-fidelity
simulation of phenomena infeasible to enact in real physi-
cal experiments, in scientific areas such as climate, nuclear
physics, astronomy, medicine, molecular dynamics, and eco-
nomics. The most powerful supercomputing systems have
tens of thousands multiprocessor nodes connected via dense,
regular networks. Effective utilization of these resources can
enable simulations to increase in scope and accuracy or
decrease the time to completion and thereby allow more
simulations to run [1].

Meshes and tori are common network topologies in super-
computing. In a mesh network, nodes are arranged in a rec-
tilinear mesh, with processors connected to their Cartesian
neighbors. A torus network extends the mesh by connecting

nodes at opposite ends of a single dimension. These links
effectively “‘wrap around” the mesh. Torus topologies are
advantageous as they significantly decrease the network
diameter with few added links, in turn decreasing the
resources needed for parallel processes to communicate with
each other. However, the large number of nodes and links,
coupled with the multi-dimensional topology of the torus,
makes recognizing and understanding poor network perfor-
mance exceedingly challenging. This is especially true as
the torus dimensions increase - while a 3-dimensional (3D)
torus can be intuitively represented in 3D space by cutting
its wrap around links, such a representation is not available
for the newer 5-dimensional (5D) torus networks. Attempts
to visualize these higher dimensional torus networks have
focused on the torus structure, using small multiples, aggre-
gation along dimensions, slicing, folding, and 3D views.
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These visualizations prioritize the Cartesian structure of the
network at the potential cost of obscuring other link usage
patterns analysts may need to understand the resultant traffic.

Our visual interface strikes the middle ground between
emphasizing torus structure and node communication.
It gives analysts insight into the torus distance between
links without requiring the use of slicing or 3D perspective.
Specifically, we create a circular layout of nodes arranged
by a space filling curve. There are several advantages to this
choice. It can be applied to a torus of any dimension, requires
only two drawing dimensions, maintains the symmetry of the
torus, and prioritizes space for link representation. To relate
this layout back to an analyst’s Cartesian conceptual model,
we provide indicators of the dimensions along the circum-
ference. These features help analysts find high-level patterns
of interest while maintaining the ability to view individual
links. They can monitor, within a single visual interface,
the network traffic, detect bottlenecks, identify better routing
strategies, debug the simulation, and so forth.

The framework we propose visualizes a multidimensional
torus network by unraveling the torus topology, laying it out
as a cord diagram in 2D, and mapping the traffic onto the
diagram’s links. Specifically, our contributions are:

o We extend the flat Hilbert curve-based torus network
linearization described in our previous work [2] to a
hierarchical representation, enabling an exploration of
the network traffic at multiple levels of detail.

« We also extend our edge bundling framework to support
these hierarchical navigation capabilities

o We compare our Hilbert layout with other embedding
techniques and demonstrate the connection between the
torus network and the Hilbert layout.

o We augment our interface by a visual representation of
the physical address space, allowing analysts to map the
visualized traffic back to the node locations.

« We devise various interaction capabilities to guide users
in utilizing our tool, TorusTrafficNP, and demonstrate
their use in several case studies with real torus networks.

Our paper is structured as folows. Section 2 provides
background on torus networks and the challenges they pose
for their visual understanding. Section 3 presents related
work in multivariate visualization in general and for torus
networks specifically. Section 4 discusses how and why stan-
dard embedding methods will not work for the problems at
hand. Sections 5 and 6 describe our proposed embedding,
the visuualization methods, and the operations defined on
them. Section 7 presents a case study. Section 8 presents
conclusions and future work.

Il. BACKGROUND ON TORUS NETWORKS

A supercomputing network typically consists of nodes con-
nected by channels with traffic. The topology of such a
network can be described by an undirected graph. Suppose
G is the graph/network,

G=((,ET) (1)
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in which the vertices V are the nodes of the network, the edges
E are the links or channels and 7 are the traffic in the links.
The torus is a type of network with specific constraints on V
and E. In the discussion below we follow the descriptions of
Nesson and Johnsson [3].

A. NODES
An n-dimensional torus network consists of K; extents in
each dimension i, where 1 < i < n. In total, there are then
N = ]_[?:1 K; nodes [3]. Each node V; in the torus has unique
coordinates (x;1, X;2, ..., Xiz), Where x;; is the coordinate of
node V; in each dimension, 0 <x; < K; — 1,1 <i<n.
The offsets of all nodes V. = [V, Vo, -+, Vy]' can be
expressed in the node coordinate matrix:

X11 X12 e Xln
X211 X2 ... X2p
V=| . . ) . 2
XN1 XN2 N XNn
In practical applications one typically chooses K; = 27
(i=1,2,...,n), where p is an integer.
B. CHANNEL
In dimension j, 1 < j < n, node X = (x1,x2,...,%X,)
connects the node
(x1, x2, ..., (xj — D(modK;), Xj11, Xj12, - . ., Xn)
and the node
(x1,x2, ..., (xj + D(modK}), xj11, Xj12, . . ., Xn)

We can find a node and its neighbors by means of con-
nectivity. Each node has two neighbors in each dimension
and 2n neighbor nodes in total. In other words, the degree
of a node in the n-dimensional torus is 2n. Since a node of
maximum offset in one dimension connects to a node of
zero offset in that dimension, the distance between node
Vilxit, xi2, . . ., Xin] and node V./'[le’ Xj2, oo )q,,,] in the torus
network can be defined:

n
Dist(Vi, Vi) = > min(lxi — x|, Ki — lxa — xul) ~ (3)
=1
where x;; is the coordinate of node V; in each dimension.
The channels E can be expressed as the pairwise adjacency
matrix.

Ej; = Dist(V;, V)) 4)

However, this adjacency matrix is quite sparse. Only when V;
and V; are neighbors, Ej; is non-zero. Note that the channels
are directed.

C. TRAFFIC

Packets flow through the channels. Thus the traffic across the
network can be expressed as a pairwise adjacency matrix, but
instead of the distances, the traffic message values are stored,

Tij = traffic(V;, V)) 5)
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FIGURE 1. Overview of our visual interface for a 5-D torus network. Left: the complete torus network with processor nodes mapped to a
ring, partitioned into 8 logical blocks defined by the Hilbert space filling curve linearization of the torus interconnect network. The lines
drawn in the circle interior show the interconnections, and the five circular tracks at the disk boundary encode the physical addresses of
the processor nodes. Right: The different logical scopes of the data traffic. Purple encodes interconnections (called channels) within the
same Hilbert block, earth-yellow encodes channels between neighboring Hilbert blocks, while the remaining colors encode channels of

remote Hilbert blocks.

The traffic can be measured using hardware performance
counters. These counters offer a window to the inner work-
ings of a system. Each counter increments upon some event,
e.g., receiving a packet on a particular link. By polling the
counter value and comparing it to the previous polled value,
the total number of packets received via a link during the
polling interval can be measured. Polling the counters of all
2n links per node provides a snapshot of traffic during the
interval. Finer-grained information, such as timestamps and
routes for individual packets or messages (groups of packets),
is typically not feasible to collect.

Visualizing a multi-dimensional torus network presents the
following challenges:

o Cl1. The node’s address is multi-dimensional. The visu-
alization should retain multi-dimensional similarity,
especially local neighborhoods.

o C2. Analysts have an understanding of the torus topol-
ogy and should be able to relate data to this context.

o C3. Nodes are connected by physical links. The visual-
ization should retain these physical semantics.

Ill. RELATED WORK ON VISUALIZATION

In this section we provide a brief review of related work of
visualization for multiple dimensions and then specifically
for supercomputing networks.

A. MULTI-DIMENSIONAL VISUALIZATION

A torus network is a multi-dimensional structure.
There are numerous visualization methods to deal with
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multi-dimensional data. In parallel coordinates [4], the
attributes define the vertical axes while the samples form
patterns of polylines. Likewise, in Radviz [5] and Generalized
Barycentric Coordinate plots [6], the attributes constitute the
vertices of a regular sided polygon and the samples form
patterns in the polygon’s interior. In all of these modalities,
the axes or vertices, respectively, are placed in regular and
predefined ways and do not create diagnostic patterns on
their own. Biplots [7] and dynamic scatterplots [8], on the
other hand, are more descriptive since the attribute axes
project into the sample distribution’s Principal Component
Analysis (PCA) [9] basis. These plots provide some insight
about element similarity in terms of the data distribution.
General low-dimensional space embedding techniques, such
as Multidimensional Scaling (MDS) [10], [11] and linear
discriminant analysis (LDA) as used by Choo et al. [12],
do not retain topology information, that is, one can no longer
see which points are directly connected neighbors and which
ones are not. Conversely, our framework maps the nodes onto
a line first, and then folds them into a circle to evoke the
torus connectivity. This radial organization of the linear node
embedding could well preserve locality in the torus network.

Providing means for interaction through selection and
brushing is important in a network visualization system [13].
Via interaction analysts can hone into network regions of
interest and tune out others. Brushing often works in conjunc-
tion with linked views [14] and allows analysts to view the
data in terms of different aspects. Our system provides all of
these types of interactions - linking, brushing, etc.
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B. NETWORK TRAFFIC VISUALIZATION

The most common depiction of a torus network is as a
Cartesian mesh representation with the “wrap around” links
either removed or shown extending into space [15]-[17].
Sometimes this view does not show links at all, instead
showing the nodes only with the links understood to be
between them [18]-[21], making these tools less suitable for
network analysis. To mitigate the issue of occlusion in 3D
mesh representations of 3D tori, Landge ef al. [22] introduced
a set of three occlusion-free 2D projections visualizing 3D
tori, linked with the standard 3D view. Each such projection
removes over half of the links. Higher dimensional torus
networks do not permit the above representations due to the
increased dimensionality required. Our approach can concep-
tually be applied for any number of dimensions.

Visualizations of higher dimensional torus networks
typically employ slicing or aggregating along dimen-
sions [19], [21], [23], [24], often with a small multi-
ples view for navigation. Adjacency matrices have been
used for topology-agnostic network layout[25], with
Fujiwara et al. [26] employing them for multi-dimensional
tori. They plot simulated message routes on the matrix as
well as a force-directed node-link layout for examining routes
through a node of interest. Instead we focus on a more
global view of the data traffic. In earlier preliminary work
the first and last author of this paper [2] proposed the idea of
linearizing the multi-dimensional network via a Hilbert space
filling curve. This provided a dimension reduction of the
network into a 1D line wrapped into circle which was trivial
to navigate. However, in that work we did not focus on con-
veying the physical address space and topology of the torus
which is necessary to understand the data traffic patterns.
In addition, our visual interface is specifically designed for
profiles collected from network counters and the mechanisms
for block mapping, bundling, and address tracking are much
clearer. All in all, the system reported in this paper is much
more mature.

We make use of a radial layout. Radial layouts
have been employed for other types of supercomput-
ing networks as well, including tree-based networks [27]
and highly-connected hierarchical (dragonfly) networks
[28], [29]. Radial layouts have also been used in other
performance visualization contexts including serial program
traces [30] and simulated memory traces [31]. A general
overview of visualization for high performance computing
systems is provided by Isaacs et al. [32] and one on radial
layouts is provided by Draper et al. [33].

IV. TORUS NETWORK EMBEDDING

WITH STANDARD METHODS

As stated above, there are three challenges in visualiz-
ing a multi-dimensional torus network: (1) projecting the
multi-dimensions into 2D, (2) maintaining the contextual
information of the analyst’s understanding of the torus topol-
ogy, and (3) preserving the semantics of the physical links.
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Our first goal is to embed the multi-dimensional torus net-
work into 2D to resolve the challenges associated with multi-
dimensionality.

For our running example, we use a 128 node 5-dimensional
torus network with dimensionality (1, 4, 4, 4, 2). We first
try to embed this network based on the node locations in
multi-dimensional space.

A. MULTI-DIMENSIONAL NETWORK EMBEDDING

As a first attempt to visualize the network, we try Mul-
tidimensional Scaling (MDS). MDS is a popular method
to embed multi-dimensional data for visualization while
preserving the pairwise similarity in the multi-dimensional
space. Here we have a pairwise node physical address sim-
ilarity matrix S. For the embedding of the torus network,
maintaining the original neighborhood structure is important.
In our study, we constructed different similarity matrices and
compare them as follows.

(1) We create an MDS plot of the processor nodes based
on a full processor-link distance matrix. Here a distance Sj;
would be the Manhattan distance it takes to go from V; to V;.
See Fig. 2 (left). The nodes are colored in red while the links
are shown as blue lines. We observe an embedding that has
local clusters, some more emphasized as others, but spread
out within each cluster.

(2) In this case we reduce the scope of nodes a given node
can reach. We consider the k-nearest dimensions for each
node (we use k = 3) and write a value of infinity into the link
distance matrix for the other dimensions. Here a distance Sj;
is the Manhattan distance between V; and V; bound within
k-hops. This emphasizes the local neighborhood structure.
Compared to Fig. 2 (middle), the structure of the torus topol-
ogy is more clear.

(3) In this final case, we maximally emphasize the local
neighborhood by further sparsifying the distance matrix. Here
S;j = 1 for immediately adjacent nodes and infinite other-
wise. See Fig. 2 (right). It yields a sparse distance matrix in
which just 8 elements of each 128-element row is less then
infinity. This embedding looks the most regular of the three.

The MDS embeddings of Fig. 2 look mysterious at
first but they can be easily explained. The right-most,
immediate-neighbor embedding shows only 64 nodes,
although there are 128 nodes in the network. This is because
each red node shown really is a superposition of two neigh-
boring nodes. MDS creates these pairs, as opposed to triplets,
since any third node would not be a nearest neighbor to one of
the other two nodes, resulting in a large repelling force in the
MDS procedure. In fact, the red lines are also pairs of lines
since they emerge from two nodes in each pair, connecting to
the two nodes of a neighboring pair.

The 2-hop MDS plot in the center of of Fig. 2 also features
superimposed pairs of nodes, but here the relationship to other
pairs of nodes is not infinite for the nodes one hop over. This
leads to the more diversified embedding. Finally, the MDS
plot for the fully linked case on the right shows all 128 nodes
since the link distance matrix is fully expressed.
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FIGURE 2. MDS embedding for different scopes in the link distance matrix (left) full, (center) three hops, and (right) immediate neighbor.

MDS’s ability to embed the multi-dimensional node struc-
ture in the 2D plane meets challenge C1. However, even
though we can explain the mappings generated (see above),
relating the placement of the nodes back to the torus topol-
ogy is difficult (C2). In other words, we cannot obtain the
contextual relation - the relation between nodes and dimen-
sions. To overcome this we propose a contextual embedding,
as described in the following.

B. CONTEXTUAL VISUALIZATION -

NODES AND DIMENSIONS

A prominent visualization method that can convey the rela-
tion of a set of data points to a set of dimensions is
RadViz (see Section III.A). It uniformly spaces the attributes
as dimensional anchors along the circumference of a circle.
The location of the data points is then determined by a weight-
ing formula where data point attributes with higher values
receive a higher weight so as to increase the attraction of the
point to the location of its corresponding attributes. For a node
V* = [x{, X3, x5, ..., x;], the corresponding location P* is:

n
P =" wivy (6)
i=1

where the weight w; = ,lx—i, and v;-“ is the location of ith

*

j=1
dimension on Radviz.

The Radviz visualization is shown in Fig. 3. The context
of a torus node location is visualized via its distance from
the dimension anchors on the circle. (Note that the first node,
(0, 0, 0, 0, 0) is mapped directly onto the “Dim0” marker
since this dimension has only one value in our example.) We
notice a denser distribution of nodes in the center. This is
because there is generally a higher likelihood of mid-range
node addresses. Yet, despite the added context, it remains
difficult to assign a concrete torus location (address) to any
of the nodes in the RadViz display. The locational mapping
is still too indirect for this.
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FIGURE 3. Contextual visualization of the network using Radviz.

We conclude that while standard multi-dimensional
embeddings like MDS can project the network into 2D and
preserve neighborhoods, they give little context about the
torus topology or the physical links. Radviz gives more con-
text about the torus topology, but not the physical semantics.
This motivates the need for another visual design that can cap-
ture local behavior, torus dimensions, and physical semantics
all at the same time. The next section describes such a design,
which is one of the novel aspects of our paper.

V. TORUS EMBEDDING AND TRAFFIC VISUALIZATION
WITH TorusTrafficVP

High-dimensional spaces are naturally difficult to compre-
hend. In Section IV, we discussed multi-dimensional embed-
dings that partially address challenges C1 and C2, but not
C3-the physical semantics of the network. Conversely, our
visual interface — TorusTraffic™” -- preserves the neighbor-
hood structure as well as the topology and contextual mean-
ing. Our approach first linearizes the torus topology and then
orders nodes by locality in a single dimension. When laying
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out the linearized topology on a circle, the arrangement is
compact and allows links to be drawn across the circle’s
interior. We add navigational elements to better relate this
node layout to the underlying torus dimensions.

A. NODE MAPPING

To visualize the torus network, we first map the nodes from
multidimensional space to the 2D plane. The layout we
present here can preserve the locality and clearly visualize
the group connections.

1) LOCALITY PRESERVING MAPPING
Section IV-A demonstrated a sequence of projections that
increasingly emphasized the connections of a node. We note
that locality (C1) in the torus can serve as a proxy for
connectivity because all direct connections are local, while
indirectly connected but local nodes have small distances.
Furthermore, we wish to preserve the sense of regularity of
the torus network. Thus, rather than using an embedding
where the context of the torus is obscured, we are using a
space-filling Hilbert curve to balance locality with regularity.
When mapping the nodes of the torus network onto 2D
space, we wish to preserve locality as much as possible:
nodes that are connected should remain close to each other.
The Hilbert space-filling curve achieves better locality than
the natural linear enumeration [2]. As the Hilbert curve is
defined for any dimension, we can use it to linearize any high
dimensional torus network.

2) BLOCK TO BLOCK CONNECTION

Based on the locality preservation, we can group some nodes
as blocks. This assists researchers to capture the group behav-
ior. Fig. 4 shows how a 2D Hilbert curve can be applied to a
2D torus (with its wrap around edges not shown) and then
linearized and placed onto a radial layout.

B 1-1 Block B 1-2 Block

B 1-3 Block 1-4 Block

FIGURE 4. Hilbert Curve in 2D and circular layout.

The Hilbert curve starts by dividing the overall network
into 4 blocks, marked 1, 2, 3 and 4. These 4 blocks are laid
out clockwise along the circle. The division of the network
by the Hilbert curve continues recursively. Take block 1 for
example; this block is divided into different sub-blocks, start-
ing from the blue block and follows the curve lines through
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the orange, green, and yellow blocks. The process keeps the
local neighbor structure within each block and the sub-blocks
are also ordered clock-wise along the circle. The next level —
the sub-sub-block level — like for example the blue block
(1-1 block) is further divided into smaller blocks, as shown
as red squares ordered from low opacity to high opacity.
This process continues until it reaches each single node.
All blocks maintain the local neighborhood structure at that
level and can be tracked back and forth via the original
physical semantics (C3). Preserving block locality and neigh-
borhoods allows users to explore the torus network from
overview to detail hierarchically since the block structure
occurs at every scale of power of two (see Fig. 4).

3 * ° @

Iy A A
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A v A

® *—Pp—0 P —0
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® ° ° o

g 7 £ 1

FIGURE 5. The process of 2D torus network linearizion. Left: the original
2D torus with 4 nodes at each dimension. Right: the Hilbert curve for this
particular network.

As a smaller working example, we use a simple 2D torus
(k = 2) with four nodes in each dimension. Fig. 5 (left)
shows the standard node-link layout. The triangles show the
direction of traffic and the nodes are colored based on their
physical address. We can clearly see four different blocks:
red, green, blue and purple. The color-coded arrows point to
the center of each block of four. We use the Hilbert layout -
Fig. 5 (right) - to linearize it, see Fig. 6. The colored arrows
point to the same blocks as they do in Fig. 5 (left). All of the
blocks are drawn compactly and their neighbor relationships
stay the same. The nodes inside a block also maintain the
original neighborhood structure.

3) PHYSICAL ADDRESS NAVIGATION

The Hilbert layout breaks the order of the original physical
coordinates at block boundaries and this can make it difficult
for analysts to map them to the original space. To relate
the layout back to the torus dimensions, we provide k rings
around the node layout disk, addressing challenge C2. These
rings encode the offsets of the nodes in each of the £ dimen-
sions. Spans of the same value mean that the nodes of the span
have the same offset within the dimension assigned to the
ring, see Fig. 6. Brightness encodes the offsets, with brighter
fields indicating a smaller physical coordinate value in that
dimension.
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FIGURE 6. Visualizing the 2D torus network with a Hilbert layout.

We can read each dimension’s physical address on the
ring and relate the traffic to it, visualized as directed lines.
For example, see the traffic marked with a red, filled arrow
in Fig. 5. This traffic can also be observed in our visualization,
marked with the same symbol, in Fig. 6. We can tell this
traffic moves from node [2,2] to node [2,1] by reading the
ring encodings.

B. CHANNEL BUNDLING
Channels are represented by lines and are drawn where a
physical link exists between two nodes. The radial layout
is well-suited to depict connections between entities, as has
been recognized in other performance visualizations [30].
Another reason we layout the nodes around the circle is that
it provides space to draw the links in the circle’s interior.
When a large number of links needs to be shown, clutter
can become a significant problem, see Fig. 7 (a). It is difficult
to visually track the lines - take the green lines for example -
since there are many lines crossing each other. To overcome
this problem we utilize the edge-bundling technique [34].
In addition, in order to track the traffic and explore it from
overview to detail, we provide an hierarchical exploration
scheme.

1) EDGE BUNDLING

To reduce the clutter, we use edge-bundling based on block
identity and emphasize grouping behavior among node
neighborhoods. The edge bundling first takes the center of
a given group of channels and then attracts the channels to
the center. Suppose E' = [e, e, --- , ¢p] being a group of
channels. Its center C is easy to obtain as the mean of the
coordinates of E’. Then all channels of this group will be
attracted by C. In order to preserve the block connections
in the original torus network, we require that any group of
channels E’ connects two blocks consistent with the blocks
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imposed by the Hilbert layout (see section V-A.2). Due to
the multi-scale property of the Hilbert layout the block size
can vary based on the analyst’s preference, exposing different
granularities in the edge bundling (see section V-B.2 for a
closer discussion).

Fig. 7 (b) shows the link display with edge bundling
enabled. We observe that there are dense connections within
each block. Compared to Fig. 7(a), the green connections
become much clearer and we can easily track them by visual
inspection. We also observe channels between neighboring
blocks that are not close in the circular (Hilbert curve-
induced) layout, but are all directly connected in the torus net-
work. These are Block 8 and 5, Block 1 and 4, Block 2 and 7,
and Block 3 and 6. Note that these connections also include
the back-links of the torus network.

Based on the connections, we nominally divide the chan-
nels into intra-block channels, adjacent block channels, and
non-adjacent block channels, where adjacency refers to the
Hilbert curve induced layout (all of these blocks are adjacent
in the torus network). These configurations are distinguished
by different colors in the visualization. As shown in Fig. 8 (a),
intra-block channels are colored purple, while adjacent neigh-
boring blocks are colored earth-yellow. For the connections
where the blocks are non-adjacent, we color the channels
orange, blue, green, or pink, respectively.

a: TRAFFIC

After drawing nodes and channels in the interface, we are set
to plot the traffic onto them. For the simple example described
above in Fig. 6, we visualize traffic by adding an arrow to the
link-line of the corresponding channel. The packets marked
in red from node [2,2] to node [2,1] are clearly visible in our
layout.

When the link is bidirectional we place a circle on the link
with its placement determined by the node dominating the
traffic (see Fig. 8 (a)). The size of the circle encodes the
number of packets sent. To avoid overplotting of these marks,
we add a small random factor to the locations of the mark
along the channel. This ensures that the traffic marks are still
close to the dominating source nodes. In this example, we see
that the left channels in the blue cluster send more packets
than they receive. Conversely, the yellow and orange clusters
in the center have a similar number of outgoing and incoming
packets.

2) HIERARCHICAL EXPLORATION SCHEME
The block-based edge bundling bears trade-offs. Having just
a small number of large blocks can remove clutter in the link
display effectively, but its dense edge bundles can make it
difficult to visually isolate specific nodes receiving or orig-
inating data traffic. On the other hand, a large number of
small blocks gives rise to thin edge bundles making it easy
to determine specific traffic source or target nodes, but some
traffic might get obscured due to the heavy line overdraw.
To allow users manage these trade-offs in an interactive
fashion we generate a block hierarchy. The hierarchy is
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FIGURE 7. Link visualization (a) without edge bundling, and (b) with edge bundling.

formed by subdividing the Hilbert curve, creating contiguous
blocks in the torus network and linear segments of nodes in
the circular layout. It allows us to generate an overview (few
blocks and link bundles) as well as detail views at different
levels of granularity (increasingly smaller blocks and thinner
more localized edge bundles).

Suppose a certain level of the hierarchy has m blocks.
Then each block contains s nodes, where s = N/m.
Here m is required to be even and N mod m = 0.
The nodes are divided into m different blocks as
Vi, Vo, -, V], [Vrr, Vo, oo Vasl, -+ Vim=Ds+1,
Vin—1)s+25 - =+ » Vims]. The channels connecting to two differ-
ent blocks form a group and are bundled.

In the 128-node example shown in Fig. 8, we divided the
full network into 4 (Fig. 8b), 8 (Fig. 8c) and 16 (Fig. 8d)
blocks, respectively. Fig. 8(b) provides a good overview of
the network traffic. We can easily see that there are two types
of traffic, colorized in green and blue (the colors could denote
different magnitudes of volume, or the like). We also quickly
see the portions of the network the different traffic occurs.
However, it is difficult to make out details of the traffic (in
fact there are a small number of blue lines embedded into the
green lines which are yet very difficult to pick out).

Next, the user selects the next level of the hierarchy, giving
rise to the configuration of Fig. 8(c). The green line cluster
is divided into two groups. While the link detail is better
observed, it is still difficult to spot the traffic of the blue lines.

Finally, selecting the bottom level of the block hierarchy
produces the visualization of Fig. 8(d). The green line cluster
is subdivided further. Now the blue lines are clearly separated
(pointed to by a black arrow), enabling the user to easily
identify the corresponding nodes associated with that traffic.
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VI. INTERACTIONS AVAILABLE IN TorusTrafficNP?
To further aid performance analysts, we developed a few more
interactions with TorusTraffic™?.

A. FILTER

A good way to manage the amount of detail shown is via
filtering. This is particularly attractive when working with
larger torus networks when the lines and marks denoting
channels and traffic can become hard to distinguish. We pro-
vide filtering capabilities that allow analysts to hide some of
the links. Specifically, we offer filters at two levels of detail:
node and group.

The node filter focuses on a single node. When the mouse
hovers over the node, only the channels connected to this
node, the traffic packet marks, and the physical address in the
k rings will be drawn. The other channels, traffic markers,
and physical addresses will disappear. Fig. 9 left shows the
results of filtering on node [0,3,2,0,1]. We observe this node
has two outgoing packages - one big and one small - to
[0,3,1,3,1] and [0,3,1,0,1] respectively. It is also receiving a
package from node [0,3,1,3,1] and two small packages from
node [0,3,1,0,1] and [0,0,2,0,1] respectively.

The group filter, on the other hand, allows analysts to focus
on a group of links through brush selection. Fig. 9 right
shows the results of highlighting the pink and the blue group.
We observe some packages circled in red that are difficult
to find in Fig. 1 (right) due to the overlapping earth-colored
links.

B. ZOOM
The filter interaction can help analysts separate channels
of interest from clutter, however, some details may still be
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FIGURE 8. Data traffic visualization. (a) Colored by block adjacency in the Hilbert curve layout, (b-d) Different levels of block granularity:

(b) 4 blocks, (c) 8 blocks, and (d) 16 blocks.

difficult to comprehend, especially the compact group traffic
on the border. We thus enable users to select and zoom into an
area with arectangular brush. Fig. 11 shows a zoomed in view
selected in this manner. To obtain the detail, the user draws
a rectangle on top of the desired area and the corresponding
zoom is created. In this example, we find some detailed traffic
inside this box, see right figure. There is also a small package
circled in red which is difficult to find in the original view.

C. DIMENSION SELECTION
Analysts familiar with the torus networks of supercomputers
often think in terms of the physical coordinates. Therefore,
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we want to tie traffic information to this familiar structure
with user selection. Analysts can click a value of a particular
dimension on the outside ring. Then only the channels and
traffic related to this dimension and meeting this threshold
will remain. Fig. 10 shows the results of selecting the traffic
for all channels where “Dim2” is three.

D. USER FEEDBACK

We tested our system with a group of 20 participants, 10 of
which were active users of supercomputers, call them experts.
First, we asked the participants about the network traffic by
showing them the data in the conventional tabular display
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FIGURE 10. Dimension selection in the interface.

(source, destination, and number of packets). Then we loaded
these examples into our tool. We asked our participants to (1)
point out locations of network traffic congestions, (2) point
out which channels are free, and (3) point out which channels
receive more packages than they send out.

We found that 9 of the 10 non-experts could not answer
these questions or gave wrong answers when using the stan-
dard traffic statistic numbers only. But they were able to gain
a good understanding of them when visualizing the network
traffic via our interface, using the interactive tools it pro-
vides. This shows that our system has great value in lowering
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FIGURE 11. Zooming in the interface - left: the original view, right: the
zoom in view.

the barrier of entry into high performance computing and
promoting a more effective use of these resources. On the
other hand, the experts we asked were already well versed
in reading the numerical statistics, but 9 of the 10 experts
found that our system gave valuable additional insight and
overall made network traffic analysis tasks easier and faster.
For example, the experts could only identify some traffic
congestions with conventional means, but with our tool they
were able to discover more of these, and in a shorter time.

VIl. CASE STUDY

We now use TorusTraffic’? to visualize and explore net-
work data obtained by executions of pF3D, a laser-plasma
interaction code used in the National Ignition Facility, across
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FIGURE 12. Torus network divided into 12 (left) and 16 (right) blocks, respectively, for the 4 x 4 x 4 x 4 x 2 (512 nodes) network.

multiple scales. The data was collected [23] from a real
world torus network: Vulcan, a 24,576-node, five Petaflop/s
IBM Blue Gene/Q (BG/Q) system at Lawrence Livermore
National Laboratory. Each node in the BG/Q architecture has
16 CPU cores with the option to run 1 to 4 hardware threads
per core, hence up to 64 processes may be running per node
(32 in our dataset). The nodes are connected by a 5D torus
network with dimensions A, B, C, D and E. Each network
link permits less than a microsecond latency and offers a
unidirectional link bandwidth of 2GB/s.

Few applications utilize all of the nodes on the machine.
Instead, several applications may be run simultaneously.
BG/Q systems aid this style of use by re-configuring the links
such that each parallel application using a sufficient number
of nodes has its own private torus. Traffic from other appli-
cations is not possible. Thus, when studying the behavior of
one application, we can restrict our focus to a torus of the size
and arrangement of one application.

The dataset contains hardware performance counters mea-
surements obtained during execution of pF3D. In this appli-
cation, the three-dimensional physical space is divided into
a grid of dimensions X, Y, and Z. The cubes of the grid
are allocated to the processes (one per each hardware thread
used). Each process communicates with all processes that
share its Y and Z coordinates (those in the X direction)
and then all processes that share its X and Z coordinates
(those in the Y direction). Thus, we expect a lot of traf-
fic in the XY-planes of pF3D. By default, the pF3D cubes
are assigned to each hardware thread on a single node
before moving onto the next node and repeating the pro-
cess. The nodes were visited in an order that incremented
the E offset first, followed by the D, C, B, and A offsets
respectively.
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Task mapping is a technique for optimizing performance
that changes the assignment of tasks (in our case, which
data cube is operated on) to processes. Bhatele et al. [35]
showed that task mapping can improve the performance of
these communications. We turn to visualization to understand
performance bottlenecks in the default task mapping at mul-
tiple scales.

We now use TorusTraffic™P to visualize and explore net-
work data on two differently sized torus networks. The first
one contains 4 x 4 x 4 x 4 x 1 (256 nodes, 8,192 processes)
and the second one contains 4 x 4 x 4 x 4 x 2 (512 nodes,
16,384 processes). The visualizations are shown in Fig. 13
left and right, respectively. Note how the outer k ring in the
256-node example is a single color as it is a 4D torus slice of a
5D torus. We illustrate how our network visualization can be
used to explore the relationship between traffic and network
topology.

Note that the 256 and 512 node examples, along with
the 128 node example in Fig. 1 (right) are similar in shape,
suggesting our visualization can scale with network size.
We can also divide the network into more blocks for a more
detailed grouping of channels. For the 512 nodes, we divide
them into 8 (Fig. 13 right), 12 (Fig. 12 left) and 16 (Fig. 12
right) blocks respectively. The size and overall shape of the
visualization are preserved.

Now we consider the traffic on these networks. In Fig. 13,
we observe that both the 256-node (left) network and
512-node (right) cases have relatively unbalanced traffic—
some channels have large traffic marks while others have
none at all. The absence of marks means no traffic is cross-
ing those channels, meaning the network is not being fully
utilized. There is some variance in the traffic, however,
with some groups sending relatively small amounts of traffic
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FIGURE 13. Traffic Visualization for different size torus networks divided into 8 blocks - left: 4 x 4 x 4 x 4 x 1 (256 nodes),

right: 4 x 4 x 4 x 4 x 2 (512 nodes).
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FIGURE 14. Traffic filtered horizontally (left) and vertically (right).

(circled in green) and others sending large amounts (circled
in red).

To explore this potential shortcoming further, we utilize
the group filter, as shown in Fig. 14 for the 512-node net-
work. Here, the left configuration has been obtained by fil-
tering horizontally while the right has been filtered vertically.
We observe that the channels of the left configuration are
barely used while those on the right carry a large amount
of traffic. Referring to the & rings, we see that dimension
A is being underutilized—Iinks that vary in dimension A

57202

carry little traffic (left) while links that vary in dimension D
carry a lot of traffic (right). We can see that this is due
to the stark difference in value of the first and fourth k
rings on either end of the grouped channels. Referring back
to the 256-node visualization, we see this reliance on the
D-dimension is also the case. This suggests that the default
task mapping for pF3D is heavily biased to use the channels
of dimension D (one of the first mapped) and that a new
task mapping could be created to spread the traffic out across
the links.
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VIIl. CONCLUSIONS AND FUTURE WORK

In the design of TorusTraffic™P our goal was to provide an
interactive visual tool dedicated to the exploration of data
traffic in multi-dimensional torus networks. Our target was
to support practical torus networks with as many as five
dimensions, but our approach is not restricted to thin num-
ber. In our design we sought to address the need for better
and more intuitive tools for traffic monitoring, detection of
traffic bottlenecks, and aid in debugging tasks. By lineariz-
ing the multi-dimensional torus processor coordinates with
a Hilbert space-filling curve we were able to overcome the
challenges associated with the high dimensionality, the topo-
logical context, and the physical semantics. Mapping the
Hilbert curve onto a circle and drawing the link connections
into the circle’s interior enables users to easily distinguish the
network traffic from the processors generating it. In addition,
we exploited the fractal nature of the Hilbert curve to enable
a multi-resolution exploration strategy that trades overview
with detail. This multiresolution viewing capability also con-
trols the degree of edge bundling we use to provide for better
visibility of the traffic in the circle interior.

The linearization of the torus to a radial layout with chan-
nels drawn across can provide structure while still showing
physical semantics. The edge-bundling technique coupled
with the hierarchical exploration scheme allows users to
explore the traffic from overview to detail, and back. Adding
physical address navigation at the circle periphery allows
users to map the visualization into the context of the actual
physical network. In user studies we found that the visual
interface and the interactions we defined on it enabled users
to make several discoveries in the data associated with real
torus networks.

In the future we would like to conduct more user studies
and then deploy our prototype system as a tool for use in
mainstream applications of torus networks
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